
 
 
 
 
 
 
 
 
 
 
 

A Real-Time 3D Terrain Engine 
being a dissertation submitted in partial fulfilment of the 

requirements for the degree of Master of Science 
at the University of Hull 

 
 

by 
 

Dimitrios Christopoulos 
 
 

September 1999 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my parents, for hanging in there 
until I finally grew up and for always 
being there when I needed them. 



 
 
 
 

Abstract 
 

Terrain visualization is one of the most fascinating and interesting fields in computer 

graphics. Although its application areas are endless and a significant amount of research 

has gone into modeling and rendering of terrain, it remains one of the most challenging 

problem areas. 

 

For realistic representation of terrain, millions of triangles are required. Such detail easily 

overwhelms even state of the art systems, which can not cope with the huge numbers of 

polygons needed to represent detailed terrain. Bottlenecks occur primarily in the 

geometry part of the graphics pipeline. 

An even greater challenge is the proper texturing of the terrain. In order to recognize 

areas of the landscape, unique textures revealing local features (cliffs, fields, houses) are 

needed. These typically occupy several gigabytes  and overload the system memory. 

 

The focus of this project is the development of a terrain engine which addresses these 

problems, employing specialized optimization methods and algorithms to allow “low-

end” computers with 3D capabilities to visualize high complexity landscapes at 

interactive frame rates. 



 
"The time has come"  The Walrus said. 

                                                                                       "To talk of many things"  
  - L.C.Carroll 
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1. Introduction 
 

1.1 Introduction to Terrain Visualisation Systems 
 

Computer graphics is concerned to a large extent with the geometric modelling and 

rendering of realistic scenes. A recurrent problem in generating realistic pictures by 

computers is to represent natural irregular objects and phenomena without undue time or 

space overhead (Fournier et al. 1982). Natural objects can only be described inefficiently 

and with great difficulty using Euclidean geometry (i.e. equations); thus there is a 

difficulty in modelling them. 
 
One such representation, which can be seen in nature, is that of landscapes. In last few 

years a considerably effort and research has gone into fast and realistic representation and 

production of terrain.  

Terrain mountain landscapes are of great importance in several areas.  

 Geographic Information Systems (GIS) 

 Flight and ground vehicle simulators. 

 Real time battlefield simulation systems. 

 Entertainment 

 Tourism and travel planning 

 Land planning 

 Weather visualisation 

 Virtual reality  

 

These are obvious examples where the ability, to render landscapes  at fast “real-time” 

rates, is essential.  

However, for terrain of any significant size, rendering the full model is prohibitively 

expensive. For a realistic representation of a terrain millions of triangles are needed 



which are impossible to be rendered in real-time even on high-end systems.  This is even 

more true for low-end systems, which have widespread use and are equipped with 3D 

graphics capabilities, which can suffer when exposed to from high polygon counts.  

 Low end systems at the consumer level typically only accelerate the most important, 

time-critical stages of the rendering pipeline. Therefore they are tuned for the 

applications they were targeted for. This make them perform best at models containing 

low number of polygons (like games), relying on high fill rates to refresh the screen. This 

approach makes models with high numbers of polygons very slow, with most time spent 

in the polygon set-up stage of the rendering pipeline. 

 

Most current terrain engines try to face these problems and employ specialised 

optimisations and algorithms to enable low-end consumer machines to visualise high 

detail landscapes at interactive frame rates. 

Terrain remains one of the most challenging types of geometric data because it is not 

naturally decomposed into parts whose complexity can be adjusted independently making 

it very difficult to develop a specialised terrain engine on any platform and especially on 

low end systems. 

Figure 1.1 shows the process normally performed when visualising terrain information. 

 

This project will develop a terrain engine for low-end systems which will be able to 

display detailed landscapes with high triangle counts at real time frame rates. Specialised 

algorithms and acceleration techniques will be developed and tuned for these systems to 

produce a highly effective and fast engine. 

 



 
Figure 1.1 Terrain visualisation process. Source (Hoppe 1996) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1.2 Structure of the Document 
 

The remaining document will be organised into the following chapters: 

 

 Chapter 2. Background 

The main concepts and ideas behind the project are discussed. Areas such as fractals 

for terrain, dynamic terrain paging and optimisation techniques and algorithm for 

accelerated rendering of complex environments shall be covered. 

 

 Chapter 3. Aims and Objectives 

The main aims and objectives of the project and the proposed work packages to 

achieve them are proposed. 

 

 Chapter 4. Design 

The design of the software and the algorithms that are finally implemented are 

examined. 

 

 Chapter 5. Implementation 

Technical detail about how the actual algorithms were implemented and problems 

involved. 

 

 Chapter 6. Results 

The results and performance of the terrain engine developed. 

 

 Chapter 7 .Future Work 

Areas in which this project could be extended or re-directed. 

 

 Chapter 8. Conclusion 



Analysis of the different parts comprising the engine and description of their 

advantages or limitations . 

 

 Appendices. Colour Plates 



2. Background 
This chapter will introduce you to the world of terrain visualization. It explains what a 

Real-time 3D Terrain Engine is, what the difficulties in building it are, and finally the 

underlying theory and algorithms which can be used to build it and overcome these 

difficulties. 
 

2.1 The Problem 
As with many things in life almost everything, which is worthy, does not come for free 

and nothing is ever as simple as it looks in the first place. Although you might have heard 

these words of wisdom before, the field of terrain visualisation is one example where 

these apply magnificently. There is an amazingly large amount of ongoing research in 

this field and the complexity of the methods needed, even in implementing a basic 

system. Each aspect of terrain visualisation is an open research field on it’s own. 

 

The problem is generally speaking, all about resources. Polygons are currently the main 

modelling method of objects in graphics. All the real world objects are currently 

transformed into an number of polygons in order to be visualised. The graphics pipeline 

of the majority of graphics systems is built around this primitive and specialised for them. 

Therefore the ability of a system to perform at interactive rates (10 fps or more) or even 

at Real-time (30 fps or more) is dependent on its polygon throughput. Thus the question 

is “Has the system enough resources (polygon throughput) to handle all these polygons”.  

The answer is frequently negative, even (expensive) state of the art systems are 

overwhelmed by the amount of data required. This is specially true for low-end 3D 

systems, which are very common and widespread and have, a limited throughput rate. 

This makes interactive terrain rendering on such platforms a real challenge, as complex 

terrain models usually need very high amounts of polygons to produce a realistic 

representation.  

 



A terrain model usually consists of millions of height samples arranged in a grid, with 

possibly several hundred thousand polygons visible in a scene. An even larger challenge 

is texturing the terrain properly. In order to recognise areas of the landscape, unique 

textures revealing local features (cliffs, fields, houses) are needed. To cover the entire 

area with textures with a sufficiently high resolution to avoid blurring requires several 

gigabytes of textures. A terrain engine is in essence a system, which displays views of 

large data sets at high frame rates using intelligent and specialised rendering algorithms 

limiting the number of geometric primitives rendered. 

It mainly consists of the following components: 

 Geometry/Texture disk paging or generation. 

 LOD (level of detail) for texture blocks. 

 LOD for triangle geometry. 

 Culling the view frustum. 

 Triangle Stripping. 

 

In the following sections the theory and algorithms behind each component and how it is 

related to terrain rendering are described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

2.2 Terrain  Representation 
 

To represent terrain we need real or synthetic data, which can be processed and 

displayed. There are two main ways to get hold of such elevation data, either it is already 

available and stored in a file (Digital Elevation Maps) based upon real landscapes  or it is 

generated using a specialised algorithm as a pre-processing phase or at run-time. 

Frequently techniques based upon fractals (Mandelbrot 1982) are used.  

 

2.2.1 Digital Elevation Maps 
The elevation data is already stored in a file and the elevation values are usually based on 

real regions on earth or on other planets. Each file provides data for a restricted region 

and is acquired by measuring the height values for this region. The most common type of 

elevation data available is gridded. Other elevation data types include point elevations 

distributed over the area unordered and contours.  

Although there are as many data types as there are providers, only two major formats 

available with height data for free. 

 

 Digital Elevation Model format (DEM)-From the USGS. These range from 1:250,000 

scale to 2.5 minute. The lower accuracy is available for most of the United States 

(USGS 1997). 

 Digital Terrain Elevation Data (DTED)-From National Imagery and Mapping 

Agency. These range from Level 0 which is very coarse and provides wide coverage, 



to the occasional 1m data, which is very rare. This data is, in general higher quality, 

but is really only for military users (USGS 1997). 

 

 

Advantages 

 Based on real world data, it therefore looks very real when rendered. 

 The data is available beforehand and only needs to be loaded  from file and rendered. 

 Changing the file automatically changes the region represented without any other 

alterations. 

 

Disadvantages 

 Large storage requirements if region too big. 

 Data in a file covers only a restricted area, restricting the possible movement to other 

directions. When additional areas are loaded from file this leads to considerable 

delays. 

 Elevation data is not available for all regions and not always to the required accuracy. 

 When approaching the ground, the terrain looks unrealistically flat. 

 

 

 

2.2.2 Fractal Methods 

The use of fractal methods does not rely on acquired elevation data but instead the data is 

generated using procedural techniques. This can be done either as a pre-processing phase 

storing the results into a file, or at run time. 

Natural objects can be realistically described with fractal geometry methods where 

procedures rather than equations are used to model objects.  In computer graphics  fractal 

methods are used to generate displays of natural objects and visualisations of various 

mathematical and physical systems. A fractal object has two basic characteristics: infinite 

detail at every point and self-similarity between the object parts and the overall features 

of the object (Hearn and Baker 1992). The self-similarity properties of an object can take 



different forms, depending on the choice of fractal representation. We can describe the 

amount of variation in the object detail with a number called the fractal dimension. 

 

Fractals can be classified into three general categories:  

 

Self-Similar fractals have parts that are scaled down versions of the entire object. 

Starting with an initial shape, construct the object subparts by applying a scaling 

parameter S to the overall shape. The parameter S can be the same for every subpart or a 

random variation in which case we obtain statistically self-similar fractals. These types of 

fractals are commonly used to model trees (Hearn and Baker 1992). 

Self-affine fractals have subparts that have different scaling parameter sx sy  sz  in different 

directions. Again we include random variations and obtain statistically self-affine 

fractals. Terrain, water, and clouds are typically constructed using these models (Hearn 

and Baker 1992).  

 

Invariant fractal sets formed with non-linear transformations including self-squaring 

fractals such as the Mandelbrot set (Mandelbrot 1982).  

 

The main methods used for generating terrain using fractal methods can be summarised 

into the following approaches.  

 Fractional Brownian Motion 

 Random Midpoint Displacement or Subdivision: Fast but less accurate. 

 Spectral Synthesis using Fourier transforms: Highly realistic but very slow. 

 Physically Based Methods  

 Erosion and Hydrology: Realistic but slow and global. 

 Faulting or Collaging: Artefacts. 

 

The most frequently used method, due to its good speed and acceptable accuracy, is the 

Random Midpoint Displacement method. Therefore it will be concentrated on this 

method which is the only one which can be applied easily in real time with very good 

results.  



   Highly realistic representations of terrain can be formed using affine fractal methods 

that model fractional Brownian motion. This is an extension of the standard Brownian 

motion which is a form of random walk that describes the erratic zig zag movement of 

particles in a gas or fluid as shown in Figure 2.1. 

 
Figure 2.1 Erratic zik zak of particles. Adapted from (Peitgen and Saupe 1988) 

 

 Fractional Brownian motion is obtained by adding an additional parameter to the 

statistical distribution describing Brownian motion. This parameter sets the fractal 

dimension for the motion path. A fractal curve can be produced having a one-

dimensional array with random fractional Brownian elevations, with a two dimensional 

array and all the elevation connected to from polygons we obtain terrain. Here the fractal 

dimension specifies the roughness of the terrain. 

Fractional Brownian motion (fBm) is computed typically with Fast Fourier transforms, 

which are slow and unacceptable for real time graphics. Therefore methods have been 

developed which approximate fBm motion and are consequently faster.  

   The most popular method of terrain synthesis is recursive subdivision, commonly 

called “plasma” or random midpoint displacement. The idea behind this method is to take 

the starting shape, usually a rectangle, and place random heights at the corners. Then the 

heights at the midpoints of each of the sides and the center are calculated by linear 

interpolation and a random value gets added or subtracted from that height. This 

procedure is repeated recursively or in a loop where each time the next level of detail gets 

computed, adding smaller random values each time, until the map is complete. The 

random factor that is added to each point is scaled proportional to the length of the sides 

as shown in Figure 2.2. 



 

 
Figure 2.2 Random Midpoint Displacement. Source (Schweighofer et al. 1996) 

 

   This method can be made very fast but it suffers from a number of artefacts, usually 

ugly, due to the poor approximation to fBm of this method  (Mandelbrot 1982). These 

artefacts tend to be most visible when looking down from above, or when looking across 

the map directly down grid lines or diagonals. There are a few techniques that are used to 

reduce these artefacts:  

• Adding random values to old points at each level:  

Every point at each level gets a random component instead of just the newly 

generated points. This gets very expensive, so the efficiency of this method is 

sacrificed. 

 

• Diamond-square method: 

Instead of calculating 4 edge points at the center of each square first calculate 

the centers of all the squares at that level of detail. Then repeat the calculation 

using the new centers and the endpoints of each side (the diamonds) to 

calculate the midpoint of the sides  (Figure 2.3) (Fournier et al 1982). 

 



 
Figure 2.3 The Diamond Square Algorithm. Adapted from (Peitgen and Saupe 1988) 

 

• Offset squares 

Create new points by subdividing each square into four smaller squares. The 

new points are actually offset from the old points, halfway along the line 

between corner and the center, instead of at the center and the midpoints of 

the sides. Each of the four new points is based on a weighted average of the 

four old points surrounding it, and each point receives a different weighted 

average. Notice that each point is weighted more heavily towards the old 

points nearest it [Miller 1986].  

 

  

• Use a hexagonal grid instead of squares 

This is discussed by Mandelbrot in Peitgen and Saupes “The Fractal Science 

of Images” (Peitgen and Saupe 1988). It removes the unbroken straight lines 

that cause the obvious artefacts. 

 

In general fractal methods have the following characteristics. 

 

Advantages 

 Minimal storage requirements when executed at run-time due to their procedural 

nature. 

 Not restricted to an area and therefore able to produce infinite terrain. 

 Flexible, all characteristics and variables on which the terrain generation is based can 

be altered to produce suitable terrain. The terrain can be shaped and changed until it 

has the required appearance.  



 

Disadvantages 

 Artefacts can occur depending on which method is chosen. 

 More difficult to control detailed appearance because of their random nature. 

 Can be computationally expensive depending on which method is chosen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 LOD for triangle geometry 
 

The most common approach for rendering large scale surfaces is to exploit the traditional 

3D graphics pipeline, which is optimised to transform and texture map triangles. The 

graphics pipeline has two main stages: geometry processing and rasterization. 

Typically the rasterization load is relatively constant. In the worst case, the model covers 

the viewport, and the number of filled pixels is only slightly more than that in the frame 

buffer. Current graphics systems and even low-end systems have sufficient fill rate to 

texture map the entire frame buffer at a reasonable resolution (typically 800*600-

1024*768) at 30-72 Hz, even with advanced features like trilinear mip-map filtering and 

detail textures. Instead geometry processing proves to be the bottleneck.  



In order to accommodate complex surface models while still maintaining real-time 

display rates, methods for approximating the polygonal surfaces (Level Of Detail) and 

using multiresolution models have been proposed. The idea is to render progressively 

coarser representations of a model as it moves further from the viewer, because there is 

little point in rendering more triangles than there are pixels. This occurs due to 

perspective projection. If the geometry is distant to the viewer or forms a certain angle 

with the view direction, the actual projection of the geometry onto the screen will be 

small and could therefore be approximated to an accuracy of a few pixels by a much 

simpler mesh, as demonstrated in Figure 2.4. 

 
Figure 2.4 LOD applied to a surface mesh. Source (Lindstrom et al. 1996) 

 

 

2.3.1 Surface simplification and Multiresolution Modelling 
As early as 1976, Clark (1976) suggested using simpler versions of the geometry for 

objects that had lesser visual importance, such as those far away from the viewer. These 

simplifications are called Levels Of Detail. Simplification algorithms can be used to 

generate multiple surface models at varying levels of detail, and techniques are employed 

by the display system to select and render the appropriate level of detail model. The 

above procedure is called Multiresolution modelling and is based on being able to 

generate a range of different LOD´s for a model so as to be able to satisfy any request of 

the system for a particular LOD approximation.  



The conditions upon which these simplifications might be used are when the object 

appears to be small (Funkhouser et al. 1992), when it is moving and when it is in the 

observer’s peripheral vision. 

 

The aim of polygonal simplification, when used for levels of detail generation is to 

remove primitives from the original mesh in order to produce simpler models, which 

retain the important visual characteristics of the original object. Ideally, the result should 

be a whole series of simplifications (as shown in Figure 2.5 taken from (Hoppe 1996)), 

which can be used in various conditions. The idea, in order to maintain a constant frame 

rate, is to find a good balance between the richness of the models and the time it takes to 

display them. 

 
Figure 2.5 Using LOD’s for distant objects. Source (Hoppe 1996) 

  
Because the problem of selecting a minimal number of points to achieve certain accuracy 

has been shown to be NP-hard (Agarwal and Suri 1994) the practical methods for mesh 

simplification are based on heuristics. Furthermore additional criteria that simplification 

algorithms consider are: 

 Continuity: Ensures that when switching from one LOD to another the difference 

(known as popping effect) will not be noticeable by the observer. 

 Shape Preservation: Preserves the general shape and characteristics of the object. 

 Approximation Error: In order to control the simplification, the approximation 

error should be measured locally (at each primitive). But for the user to be able to 

specify the simplification, a global bound should be set on the error. 

 Topology Preservation: A change in the topology of the object must be avoided 

because it leads to noticeable changes. 



 

Operations performed on the mesh in order to simplify it are typically: 

• Normalisation: removal of degenerated faces or edges and any primitive defined 

multiple times. 

• Vertex Simplification: removal of all points included within a volume. Thus, nearby 

points and faces are combined. 

• Edge Simplification: removal of all edges shorter than some threshold. 

• Angle-based Simplification: removal of edges, which form a closed angle. 

Conversely, edges, which are aligned, are merged. 

• Face size Simplification: removal of all faces which have an area smaller than some 

threshold. Holes might be filled. 

• Face normal Simplification: merging of all adjacent faces with near parallel 

normals. 

These operations must be used within some kind of control mechanism in order to guide 

the simplification.  

 

Garland and Heckbert (1994) have done a nice survey on multiresolution algorithms, 

below are their findings summarised, according to simplification operations performed 

and their characteristics. 

 

 Image pyramids 

Image pyramids are the simplest and most common type of multiresolution model used in 

computer graphics today. They are a successful and fairly simple multiresolution 

representation of raster images (Rosenfeld 1982). 

 Volume methods  

- Truly multiresolution 

- Best on volume data only 

Volumetric approaches to multiresolution modelling. More suitable to volume rendering 

than rendering in polygonal form. (Garland and Heckbert 1994).  

 



 Vertex decimation 

- Good quality 

- Manifolds only 

- Preserves topology 

Vertex decimation is an iterative surface simplification algorithm. In each step a vertex is 

removed, all the faces adjacent to that vertex are removed and the model is retriangulated 

(Garland and Heckbert 1994). Relevant publications are (Schroeder et al. 1992).  

 

 Vertex clustering 

- Fast & General 

- Hard to control 

- Poor Quality 

Vertex clustering is a simple method. First, the objects are subdivided into smaller boxes 

which contain the vertices. All the vertices falling within a single cell are cluttered 

together and replaced by a single representative vertex when a lower Level Of Detail is 

required (Garland and Heckbert 1994). Relevant publications are (Rossignac and Borrel 

1992). 

 

 Edge Contraction 

- Smooth transitions 

- Good quality 

An edge contraction (or edge collapse) takes the two endpoints of the target edge, moves 

them to the same position and deletes one of them. New edges are build and faces that 

have degenerated into lines or points are removed. Typically this removes two triangular 

faces per edge contraction. Relevant publications are (Hoppe et al. 1993), (Garland and 

Heckbert 1997).  

 Simplification envelopes 

- Global Error guarantee 

- Oriented manifolds only 

- Preserves topology 

- Difficult to construct 



With this method the global error resulting from the simplification can be controlled. 

This is accomplished by offsetting the original surface both outwards and inwards. This 

defines an outer and inner envelope. By generating an approximation that lies between 

these envelopes, there is always an error guarantee. This naturally preserves the original 

model topology (Garland and Heckbert 1994). Relevant publications (Cohen et al.  

1996). 

 

 Wavelet surfaces 

- Truly multiresolution 

- Smooth manifolds only 

- Topology can not change 

Requires that the surface be reconstructed using a wavelet representation. This is 

typically difficult. Eck et al. (1995) developed a method for constructing wavelet 

representations of arbitrary manifold surfaces. The surface has to be remeshed before 

wavelets can be constructed. In addition, the topology of the model must remain fixed at 

all levels of detail. The wavelet representation is also unable to adequately preserve sharp 

corners and other discontinuities on the surface (Garland and Heckbert 1994). 

 

 

 

 

 

 

 

 

 

 

 

2.3.2 View dependent or Continuous LOD 



Having an approximated terrain model in various resolutions gives us the ability to 

switch between predefined LOD at run time depending on criteria such as distance, 

roughness, and screen projection. Although this might be all that is needed for object 

visualisation for terrain the case is more complicated. Because terrain usually stretches 

out in the distance different levels of resolution are required in the same representation. 

Regions near the viewer must always be represented at the highest detail and regions 

which are distant or have a small screen projection, can be represented in the same frame 

with lower detail. It is obvious that being able to represent the surface only with one 

LOD per frame would cause either inaccuracies in near regions if a low LOD was used or 

redundant polygons for far regions if a high LOD was used. 

 

Terrain representation remains one of the most challenging areas because it is not 

naturally decomposed into parts whose complexity can be adjusted independently, and 

because the qualities required by a triangulation is view dependent. Finding such a mesh, 

and updating it as the viewing parameters change, is referred to as view dependent or 

continuous LOD control. The challenge is to locally adjust pixel tolerance while 

maintaining a rendered surface that is both spatially and temporally continuous. To be 

spatially continuous the mesh should be free of cracks and T-junctions. To be temporally 

continuous, the rendered mesh should not visibly “pop” from one frame to the next. 

 

Several schemes have been developed to address view dependent LOD control and are 

summarised into groups in Table 2.1. In essence these algorithms perform the same 

operations on the mesh and use also the same criteria as their LOD or Multiresolution 

counterparts. Instead of simplifying the whole terrain at once they refine or combine 

regions from frame to frame so as to achieve different LOD’s over the same terrain and 

smooth transitions. 

 

 Pre-computed: all possible meshes are available at runtime and combined or 

switched in or out. 

 Run Time: mesh is created/edited every frame. 

 



 Regular grid 

Advantage: less storage, simpler 

code, faster geometry queries, easily 

extendable texture mapping. 

Triangulated irregular Network 

(TIN) 

Advantage: Smoother terrain with less 

error and approximations with less triangles 

 

Pre-

computed 

  

 (Garland and Heckbert 1995) 

  (Schroeder and Rossbach 1994) 

 MultiGen 

 

 

Run Time 

 

 (Lindstrom et al. 1996) 

 (Duchaineu et al. 1997) 

 (Miller 1995) 

 (Falby et al. 1993) 

 TopoVista 

 

 (Hoppe 1997) 

 (Cohen and Levanoni 1996) 

 (De Berg and Dobrindt 1998) 

 (De Floriani and Puppo 1995) 

 (Xia et al. 1997) 

 (Willis et al. 1996) 

 

Table 2.1  Comparison of different approaches 

 

 

Triangulated Irregular Network (TIN) 
Much of the previous work on polygonalization of terrain surfaces has concentrated on 

triangulated irregular networks. A number of different approaches have been developed 

to produce TIN’s using Delaunay and other triangulation’s (Garland and Heckbert 1995), 

(Schroeder and Rossbach 1994). Many representations that have been proposed lend 

themselves to Real Time LOD.  

Willis et al. (1996) describes a hierarchical triangulated irregular network (TIN) data 

structure with “near/far” annotations for vertex morphing, along with a queue driven top-

down refinement procedure for building the triangle mesh for a frame. No advantage is 

taken from frame to frame coherence. 

Xia et al. (1997) and Hoppe (1997) give similar methods for interactive, fine-grained 

LOD control of general TIN meshes based on view dependent refinement of pre-



processed progressive mesh representations (Hoppe 1996). The simplification is done by 

applying an edge collapse operation, and the result is a simplified mesh and a series of 

vertex splits which are an inverse of edge collapses and are used to introduce details into 

the base mesh. 

Several methods that use Delaunay triangulations have been proposed by Cohen and 

Levanoni (1996), De Berg and Dobrindt (1998) and De Floriani and Puppo (1995). In 

particular by Cohen and Levanoni (1996) support on-line view dependent LOD with 

temporal coherence, but must resort to “two-stage” geomorphs which will avoid the 

popping effect. Compared to quad trees and bintrees these methods allow more general 

distribution of vertices over the domain. However the mesh connectivities are again 

constrained, in this case by the Delaunay criterion. 

In general TIN’s allow variable spacing spacing between vertices of the triangular mesh, 

approximating a surface at any desired level of accuracy with fewer polygons than other 

representations. However, the algorithms required to create TIN models are generally 

computationally expensive. 

 

Regular Grid 
Regular grid surface polygonalizations have also been implemented as terrain and 

general surface approximations.  

Miller (1995) uses a quad tree to pre-process a height field defined on a uniform grid. In 

a pre-processing phase, vertices at each quad tree level are computed using an 

approximate least squares fit to the level below. For each frame at run time, a priority 

queue drives quad tree refinement top-down from the root, thus allowing triangle counts 

to be achieved directly. 

Lindstrom et al. (1996) and Duchaineu et al. (1997) who choose triangle bintree meshes 

for representation, obtain high frame rates for large output meshes using a bottom-up 

vertex reduction methodology enhanced by an elegant block LOD algorithm. Advantage 

of frame to frame coherence is taken. 

Falby et al. (1993) uses again a quad tree representation for constructing multiple level of 

detail. Lower LOD’s are produced by discarding every second vertex from the higher 

LOD, the criterion used as to when to use each level of detail is distance. 



Regular grid representations generally produce many more polygons than TIN’s for a 

given level of approximation, but grid representations are typically more compact. They 

also have the advantage of allowing for easier construction of a multiple level of detail 

hierarchy. Simply sub sampling grid elevation values produces a coarser level of detail, 

whereas TIN models generally require complete re-triangulation in order to generate 

multiple levels of detail. 

 

Of course there are other hybrid methods and representations these techniques Figure 2.6 

shows a typical top down view of the various representations for each method . 

 
Figure 2.6 Typical Regular Grid, TIN and Hybrid representations. 

 

 

For typical example frame generated by these approaches is illustrated in Figures 2.7 and 

2.8, which are taken from (Hoppe 1997) and (Duchaineu et al. 1997). Both show a birds-

eye view of the mesh. Neighbourhoods that are flat, distant or outside the view frustum 

are triangulated more coarsely than close rough neighbourhoods. Figures 2.7 shows 

clearly that despite the large LOD approximation in various areas of terrain the actual 

view remains without loss of quality. 

 

 



 
Figure 2.7 View Frustum Culling and LOD applied to terrain mesh. Source (Hope 1997) 

 

 

Figure 2.8 Triangulation example frame, with eye looking right. Dark grey region is outside the view 

frustum, light grey is inside and medium grey overlaps boundary. Source (Duchaineu et al. 1997) 
 
 

 

 

 

 

 

 



 

 

 

 

 

2.4 Texture Mapping 
 

Texture mapping is used in the model to give a more photo-realistic and detailed 

appearance. Most systems today support hardware accelerated texture mapping. 

Implementing texture mapping in software is very expensive and is therefore mostly not 

feasible.  

Most hardware implementations of texture mapping require the texture data to be resident 

in a specially designed memory connected directly to the 3D chipset. This memory is 

called texture memory and especially in the case of low-end systems is a very sparse 

resource. Using unique textures (phototexturing) to represent the underlying model 

requires large amounts of texture data. 

 

 

2.4.1 Resolution and Colour depth 
The main factor determining the amount of data needed is the resolution and the colour 

depth needed. The resolution should ideally be set to meet the requirements of the 

application, or as close as is allowed by the system. If the application mostly has high 

altitude view points, low texture resolutions may be used, as detail will be lost by 

rendering multiple texels onto the same pixel. If the view point is close to the ground 

then high resolution textures are necessary to avoid blurring. 

Colour depth determines the available colour range, which can be displayed by the 

textures. The RGBA representation is most common, requiring 3 intensity components 

(Red, Green, Blue) and one alpha component. Fewer intensities may be used (8 bits 

yielding 256 intensities) to decrease the memory consumption of each texture. More 

information about intensity and colour representation can be found in (Foley et al. 1990).  

 



 

 

 

 

 

2.4.2 Terrain texturing approaches 
In general there are three main approaches to texturing terrain 

 Phototexturing 

 Detail/Noise textures 

 Generic textures 

 

Phototexturing 
In this case the model is covered with textures being actual photographs of the object. 

These photographs are in the case of terrain rendering, high-resolution aerial photos of 

the area. Phototexturing is only feasible on low-end systems with low resolutions 

textures, because of rapidly increasing size of the data set with higher resolutions. As an 

example lets assume the model covers an area of 10x10km, the terrain is represented with 

1 texel per square meter and the texture is RGB coded with 8 bits of intensity for each 

component. Then 10.000x10.000x3= 294 MB would be required. 

 

Detail/Noise Textures 
This method can be applied when the size of the phototextures is too large to fit in the 

memory at once. Use a single texture, essentially noise over the terrain and then colour 

the vertices of the polygons. Then, when close multipass that texture with your actual 

texture (using the alpha values at the vertex’s to blend in the texture smoothly), over a set 

number of frames blend the two from 100% vertex/noise to 100% texture. Then use 

another pass to blend in a smaller, detail noise texture to add noise at the pixel level to 

avoid the big blur syndrome. 

 

Generic Texturing 



If an actual phototextured representation of the terrain is not required or feasible, generic 

textures may be an appropriate solution. Generic texturing means using a set of different 

textures for different areas of the terrain model. Thus with 8-10 textures for different 

terrain types, it should be possible to create a fairly accurate representation of the model.  

A problem with this kind of texturing is making good transitions from one texture type to 

another. This can be solved using specialised transition tiles where the two adjacent tile 

are mixed and blended into each other  (Woo et al. 1997) as shown in Figure 2.9.  

  

 
Figure 2.9 Transition tiles between two texture types 

 

 

 

2.4.3 Detail Management 
Strategies similar to that used for LOD reduction in polygon resolution can be used to 

determine texture resolution as well. Lindstrom et al. (1995) propose an algorithm where 

texture resolution is based on distance and viewing angle of the viewer to a texture block 

of geometry. 

 

Distance Based Texture Resolution 



For the distance-based resolution, a series of cut-offs for texture resolution are defined. 

The resolution is decreased the further away a texture block is. These cut-offs distances 

should be chosen carefully because the image quality is affected to a greater extend by 

colour cues than by spatial cues associated with the terrain geometry. When the error 

introduced is significantly larger than one pixel, the scene appears blurry as each screen 

pixel does not map to a unique texture pixel (texel). 

 

Viewing Angle Based Texture Resolution 
Resolution is also set by inspecting the angle between the normal of the polygon and the 

view direction. Polygons that are rotated away from the viewer occupie less area on the 

screen than if they are perpendicular to the line of sight. As the polygon rotates away 

from the viewer lower texture resolutions may be used to render the polygon. Thus when 

polygons are viewed from the side, a lower texture resolution can be used. 

 

Mip Mapping 
Textures primitives can be viewed at any distance like any other object in the scene. 

When textured objects move further away from the viewpoint, the texture map must 

decrease in size along with the projected image of the object. To handle these situations 

the visualisation API has to filter the texture map down to an appropriate size in order to 

map it onto the object, without disturbing artefacts. These are not always avoidable, 

because as the object moves away from the viewpoint the texture must be scaled and 

filtered and may appear to change abruptly at certain transition points. Furthermore all 

these operations are too time consuming to be properly performed at run time. 

These artefacts and the time consuming operations at run time, can be avoided by 

specifying a series of pre-filtered texture maps of decreasing resolution, called Mip-Maps 

(Williams 1983). Mip is short for “multim im pravo”, which means “many things in a 

small place”. Mipmapping helps minimise the amount of texture data needed to render a 

scene, since the mipmapping algorithm determines which texture map is to be used on the 

size (in pixels) of the primitive to be mapped. Figure 2.10 shows a typical Mip-Map 

pyramid generated for a texture object. Therefore Mip-Maps 



 Match the level of detail in the texture maps to the image that is drawn on the screen. 

For a smaller primitive lower resolution texture is used. 

 Avoid shimmering and flashing (aliasing artefacts) in the textures of an object as it 

moves. 

The OpenGL visualisation architecture supports hardware accelerated texturing, 

multitexturing, and mipmaping. 

 
Figure 2.10 A Mip-Map Pyramid. Source (Flavell 1999) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

2.5 Culling 
 

LOD management alone is often not enough to achieve the fastest possible rendering of a 

model. Visibility culling algorithms attempt to avoid drawing objects that are not visible 

in the image. This approach was first investigated by Clark (1976) who used an object 

hierarchy to rapidly cull surfaces that lie outside the view frustum. View frustum culling 

techniques are most effective when only a small part of the scene’s geometry is inside the 

view frustum. Airey et al. (1990) and Teller (1992) described methods for interactive 

walkthroughs of complex environments that compute the potentially visible set of 

polygons. Both of these methods require a lengthy pre-processing step for large models. 

More recently Luebcke and Georges (1995) developed a dynamic version of this 

algorithm that eliminates the pre-processing. Such methods can be very effective for 

densely occluded polyhedral environments, such as building interiors, but they are not 

suited for mostly unoccluded outdoor scenes.  

If we could avoid overloading the rendering pipeline with polygons, which would be 

hidden/obstructed, significant rendering time could be saved. On the other hand if the 

computation to find out these polygons causes too much overhead the rendering time 

would not be optimal. Generally we want to keep a balance between computation time 

and number of rejected polygons. 

 



 

2.5.1 View-Frustum Culling 
Typically the viewing volume of the observer in a scene is called the “View-Frustum”. It 

consists of six planes (near, far, right, left, top, down) and forms a convex polygon. 

View-frustum algorithms use spatial data structures and statistical optimisation 

(bounding volumes) in order to determine quickly if a geometry is inside the frustum. If a 

node of the structure or a bounding box enclosing polygons overlaps with the view 

frustum then it is rendered otherwise it is rejected. Figure 2.11 shows an example of such 

techniques. The scene is cut up into blocks each block, which is not inside the viewing 

frustum (grey blocks), is not rendered. Assarsson and Moeller (1999) have done 

extensive research on this topic. 

 

 
Figure 2.11 View-Frustum culling example 

 

 

2.5.2 Backface culling 
This form of culling is the most widely used and well documented. It based on the fact 

that in most polygonal objects the viewer never sees the backside of a polygon, so we can 

safely cut away all polygons, which face away from the viewer. If a polygon faces away 

is simply determined by the angle, which forms the normal of the polygon with the view 

direction vector (if less than 90 degrees it is accepted otherwise it is rejected), typically a 

dot product is performed. If the terrain has mountains this form of culling could also 



result in great speed increases, whereas if the terrain is flat almost all polygons can be 

seen and the overhead compared to the speed increase rises.  

Because this operation is done on a per polygon basis it is more expensive and should 

only be performed after view-frustum culling. 

 

 

2.5.3 Occlusion Culling 
Occlusion culling involves computation of set of polygons that are within the viewing 

frustum but are not visible from the current viewpoint. This could be because some other 

geometry (large mountain, or building) is in the line of sight and hides all the otherwise 

visible area behind it. As in view frustum culling it relies on spatial data structures and 

statistical optimisation, and can reduce further more reduce the number of polygons send 

down the pipeline. Hudson et al. (1997) presents some object space techniques on this 

subject. In general these kinds of algorithms are divided into two partially sub problems. 

 

 

 Select a set of occluders to use for the given viewpoint. This can be done either at real 

time, or as a pre-processing task. 

 Use them to cull away occluded portions of the model. 

 

Any combinations or primitives can be used as occluders, however usually they are 

restricted in order to ease the culling to be convex or a union of two convex objects. 

These algorithms are very difficult and complex to implement compared with the other 

culling techniques, therefore they are implemented only when it is really necessary for 

the application or system. Figure 2.11 shows an ideal scene for occlusion culling, the 

grey areas are culled away by the view-frustum, the light grey are region culled away by 

the occluder and the white regions are the only ones which will be rendered. 



 
Figure 2.11 Occlusion culling 

 

 

 

 

 

 

 

2.6 Triangle Strips and Spatial Data Structures 
After covering the algorithms which accelerate the rendering of the geometry, it is time 

to review some optimisations, which vary form platform to platform, and the spatial data 

structures which support these algorithms. 

 

2.6.1 Triangle Strips 
Almost all scientific visualisation involving surfaces is currently based on triangles. To 

speed up the rate at which the current systems can visualise these models is also essential 

to be careful how they are triangulated. Partitioning polygonal models into triangle strips 

as shown in Figure 2.13 can significantly reduce rendering times over transmitting 

triangles individually. This is because although we specify the same number of polygons, 



using triangle strips a considerably smaller number of triangles/vertices are sent down the 

pipeline. 

 
Figure 2.13 Triangle Strips 

 

In a set of triangle strips each triangle shares an edge with its previous one, in this way 

instead of transforming 3*n (n:number of triangle) vertices, the renderer transforms 2+n 

vertices. Evans et al. (1996) presents some efficient algorithms on this subject. Most 

approaches pre-process the object to form triangle strips, in the case of terrain with LOD 

where vertices get inserted and deleted at run time and the triangulation is not predefined 

for the whole object, care must be taken when choosing the triangulation algorithm. 

Again there is a trade off between constructing an optimal triangle strip and the overhead 

it causes. 

 

 

 

2.6.2 Quadtrees 
A quadtree is derived by successively subdividing a 2D plane in both  dimensions to form 

quadrants as show in Figure 2.14. When a quadtree is used to represent an area in the 

plane, each quadrant may be full, partially full, or empty (also called black, gray, white 

respectively), depending on how much of the quadrant intersects the area. A partially full 

quadrant is recursively subdivided into subquadrants. Subdivision continues until all 

quadrants are homogeneous (either full or empty) or until a predetermined cut-off depth 

is reached. Whenever four sibling quadrants are uniformly full or empty, they are deleted 

and their partially full parent is replaced with a full or empty node. As we can see in 

Figure 1, any partially full node at the cutoff depth is classified as full. The successive 



subdivisions can be represented as a tree with partially full quadrants at the internal 

nodes and full and empty quadrants at the leaves. 

 
Figure 2.14 Quadtree subdivision 

 

If the criteria for classifying a node as homogeneous are relaxed, allowing nodes that are 

below or above some threshold to be classified as full or empty, then the representation 

becomes more compact, but less accurate. The octree is similar to the quadtree, except 

that its three dimensions are recursively subdivided into octants.  

 

These data structures are not only used to store some geometry efficiently, but they also 

enable fast execution of operations. These operations include: 

• Neighbour finding techniques. 

• Set Operations (union, intersection). 

• Transformations (translation, scaling, rotation). 

• Perimeter computation. 

• Component Labeling. 



Although Quad and Octrees started as methods for set operations and space 

saving, they can 

be applied efficiently to terrain rendering and storage. The storage process is different in 

the case of terrain data, which are continuous. In the case of terrain we do not have empty 

or full nodes, each quadrant represents a portion of the whole terrain and its 4 children 

occupy the same area as their parent. This is shown in Figure 2.15. 

 

 
Figure 2.15 Quadtree Data Structure 

 

This representation is not only compact which allows for easy terrain paging/caching but 

also provides a very convenient way to perform LOD. As can be seen in Figure 2, the 

quadtree has various levels of nodes before the leaves, which represent the maximum 

resolution. Each level in the tree structure represents the same area with a different 

resolution. Thus if the area is distant we can represent it safely using lower resolutions 

(i.e level 1 in Figure 2), and if it is near, using higher or the maximum resolution (i.e. 

level 3 in Figure 2).  

Problems can arise (cracks) when neighbouring regions are represented with different 

resolution. This can be overcome either by introducing additional polygons, which will 

cover these cracks or by the use of a restricted quadtree (Herzen and Barr 1987). 



Furthermore because its compactness it is very easy to pre process the whole terrain into 

regions covered by quadtrees store them on disk and load them into memory once they 

are needed. Frustum clipping is performed very rapidly with the use of quadtrees. Once 

the parent is outside the frustum all its children are marked as outside too and thus whole 

regions can be rejected without any expense. 

 

 

 

2.6.2 Octrees 
Octrees are extension of quadtrees and are used to store 3D volume data. Each node has 

eight children and terminal nodes have none. An octree is developed by recursive 

decomposition of a three-dimensional object, each octant is further subdivided into 

smaller octants. 

 

An octree can record which subvolumes or voxels are occupied by an object. Therefore it 

provides an approximation of the object, the accuracy determined by number of 

recursions done when generating the octree structure for an object.  

Octrees can also provide a spatial index to a 3D object. Each node would contain the 

polygons for that particular area represented by the node. Like quadtrees octrees can be 

used for LOD computations of 3D objects. 

 

 

 

 

 

 

 

2.6.3 BSP Trees 
Binary Space Partitioning Trees recursively divide an object or space using dividing 

planes (Fuchs et al. 1980). While octrees and quadtrees effectively do this based on a 



regular pattern, the dividing planes in BSP trees may be arbitrary planes in 3D space. 

Figure 2.17 shows a BSP tree representation of a room in two dimensions. In this 

example the dividing planes are perpendicular or parallel, but this does not have to be the 

case. 

BSP trees have application primarily in architectural walkthroughs (Airey et al. 1990). 

The floors and walls can be represented as plane in the BSP tree, and thus a small 

Potentially Visible Set (PVS) of polygons can be generated. This partitioning can also be 

used to divide data so that all of it need not be loaded into memory the same time. 

 
Figure 2.17 BSP tree representation of a room taken from (Fuchs et al. 1990) 



3. Aims and Objectives 
This chapter briefly outlines the core aims and objectives of the project, and discusses which areas of 

terrain rendering shall be concentrated on.  

 

3.1 Project Aims 
A Greek philosopher said once “Everything moves”. He is right the whole world around 

us moves and the probability is that we are moving with it.  Sometimes though it is good 

to stop moving and start listening around you, maybe then you will find an aim in what 

you are doing. 

 

The last years have witnessed a boom in field of 3D graphics, both in software and in 

hardware. Almost every few months more powerful systems with even more impressive 

graphics capabilities are made available. Due to this new systems algorithms and 

methods can be investigated and implemented which weren’t feasible before. One of the 

primary goals which have become feasible is also the representation of natural objects 

such as terrain and landscapes in real time. The primary difficulties encountered in such 

an undertaking are, as explained in the previous chapters, the bandwidth and the 

resources.  

 

Bandwidth is ability to produce/gather the actual height data. Memory and access times 

to peripherals limit the size of the actual area which can be displayed and loaded in at a 

particular time. The user is constrained either by the size of the area, or by large loading 

times when loading from disk additional data. Therefore intelligent and efficient paging 

mechanisms are needed.  

Procedural modelling and fractal techniques are a solution to this problem and have been 

applied in the past successfully for the solution of similar problems. The use of such 

techniques introduces additional problems but the advantages are great. The above facts 

and because there are less solutions available that use these techniques in the field of 



“real time” 3D landscape generation and display (the majority loads up the terrain from 

file), we will use them as our main method for landscape generation. 
 
Resources are always sparse when it comes to real time display. Therefore appropriate 

techniques for accelerating rendering have to be investigated and implemented. Level Of 

Detail techniques for geometry and textures, frustum culling, data structures and 

triangulation techniques must be implemented efficiently, and will be the main basis of 

our system. Furthermore the application of these techniques and their combination with 

procedural (fractal) techniques into one system will be one of the most interesting aspects 

of this project. 

 

This project will try to continue where others in the past have stopped due to immaturity 

of the hardware and algorithms they used. The goal is to show that an implementation of 

real-time systems, which display large 3D landscapes, is feasible and can produce very 

good results even on low-end 3D systems.  

 

Thus the main aim of the project is: 

 Real Time Terrain Rendering on low-end 3D systems 
 

 

3.2 Project objectives 
The overall aim for the project may be broken down into the following objectives: 

 

 Implementation and research of fast fractal terrain generation techniques. 

 Implementation of suitable data structure to efficiently store, retrieve and update the 

terrain in real-time. The structure should be suitable for fractal terrain generation and 

accommodate for infinite terrain. 

 Review suitable rendering acceleration techniques such as LOD and frustum culling. 

 Implement and adjust techniques for fractal terrain generation and infinite terrain 

(most techniques work on a static mesh). 



 Implementation of suitable triangulation and system optimisation for fast display of 

terrain. 

Extensions 

 Implementation of Environmental aspects and natural phenomena such as clouds, 

water, atmospheric attenuation and agricultural detail (plants). 

3.3 Project Plan 

The final outcome of this project will be an interactive display system of terrain. 

Therefore a computer simulation and walkthroughs of terrain will be presented. 

Furthermore various data structures and ways of encoding and retrieving terrain 

information will be tested and analysed. The final structure must meet specific criteria 

and conditions, which make it suitable for terrain display and encoding. Criteria and 

techniques will be found to compute and apply LOD to the mesh depending on the view 

position. Techniques like frustum culling and triangle stripping will be investigated and 

implemented in time efficient ways. Fractal terrain generation techniques will be 

researched which produce realistic looking terrain under the given time constraints.  

The proposed different stages of the project will be. 

1. Background and Basic understanding of fractal terrain generation techniques, and 

methods for accelerated rendering (LOD, frustum culling, caching, spatial data 

structures etc.) 

2. Implementation of fractal terrain generation technique and visualization of produced 

terrain without and acceleration methods.  

3. Incorporation of methods which speed up rendering dramatically so as to produce 

interactive simulation. Methods probably employed will be a spatial hierarchy for 

efficient storage, retrieval and frustum culling taking into account frame to frame 

coherence (ie. Quadtree), caching and triangle strip generation.  

4. Implementation of environmental aspects. 

5. Computing speedup and efficiency of applied methods and testing of simulation. 

6. Complete the writing of the dissertation. 

 



   The system will be programmed using C/C++ programming language. The compiler 

used will be Visual C++ 5.0, which produces 32 bit applications for the Windows 95/NT 

operating systems. OpenGL will be used as a graphics library with the glut library 

providing the user interface routines. 

 



4. Design 
The previous chapters have summarised most of the work done in the area of terrain 

visualisation systems and some of their related subjects. This chapter shall be outlining 

how the aims and objectives are intended to be achieved. Part 1 of this chapter will cover 

the desired functionality and requirements of the system. Part 2 will discuss the proposed 

algorithms that are intended to be implemented. 
 

 

4.1 Requirements 
 

Before starting analysing and suggesting we have to focus once again on the functionality 

that our system has to incorporate.  
 

 Terrain Generation 
Most terrain engines, because of unavailability of data in memory restrict the movement 

of the user to certain areas, or have significant loading delays as new geometry is paged 

in. One objective of this system is to avoid these problems and not restrict the user to an 

area, but to allow navigation in any direction desired without any restrictions or loading 

delays. 

 

 Appearance 

The terrain should be produced fast and avoid artificial artefacts, it should mimic natural 

terrain as much as possible. Furthermore natural colouring and texturing should be 

applied to the geometry rendered so as to provide a natural appearance. Environment 

features such as clouds, sea, waves, fog should be available for experimentation. 

 

 Rendering 

In order to show detailed terrain the system should be able to cope with large amounts of 

geometry and textures. These should be handled intelligently and reducing their size in 



order to enable the system to render them in real time. However the reduction in 

complexity should not be noticeable by the user. 

 

 

 

 Feedback and control 

Feedback provided by the rendering engine should number of frames per second (fps) 

displayed, and the mount of geometry (polygons) rendered. There should be options to 

experiment (shut on or off) with various rendering options such as Level Of Detail or 

Culling and observe their effect on performance. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

4.2 Terrain Generation and Paging 
 

The backbone of every terrain engine is the terrain generation and paging algorithm. As 

seen from previous chapter the terrain generation is based on fractal algorithms. This 

approach has the advantage of practically unlimited terrain generation (we can generate 

as many height values as needed) and minimal storage requirements. The disadvantage is 

that it is difficult to control. 

 

 

4.2.1 Fractals 
Although there are many fractal algorithms available we have to make a trade off 

between execution speed and approximation (artefacts).The implementation is based on 

an algorithm proposed by Fournier et al. (1982) which is one of the fastest available and 

produces very good results. This algorithm is known as “The Diamond-Square 

algorithm” based on the order it visits the points when producing the terrain. Every point 

for which we require is visited only once, whereas other algorithms need multiple passes. 

Below we will explain the actual algorithm and how it is applied to terrain rendering. 

 

The Diamond-Square algorithm 

Although based on a complex theory the basic algorithm as it is applied to fractal terrain 

generation is simple. Essentially what we do is generate a coarse initial random terrain. 

Then we will recursively add additional random details that mimic the structure of the 

whole, but on increasingly smaller scales.  

These are the steps we apply to build our fractal terrain: 

1. We first assign a random height to the four corner points of a grid (a in Figure 

4.1).  



 

2.  We then take the average of these four Corners, add a random perturbation and assign 

this to the midpoint of the grid (b in Figure 4.1). This is called the diamond step 

because we are creating a diamond pattern on the grid. (At the first iteration the 

diamonds don’t look like diamonds because they are at the edge of the grid; but one 

look at Figure 4.1 will make this step clearer). 

 

3. We then take each of the diamonds that we have produced, average the four 

corners, add a random perturbation and assign this to the diamond midpoint   (c in 

Figure 4.1). This is called the square step because we are creating a square on the 

grid. 

 

4. Next, we reapply the diamond step to each square that we created in the square 

step, then reapply the square step to each diamond that we created in the diamond 

step, and so on until our grid is sufficiently dense. 

 

 
Figure 4.1 Steps of the diamond square algorithm. Adapted from (Peitgen and Saupe 1988) 

 

An obvious question arises: How much do we perturb the grid? We need to know about 

the roughness coefficient. This is the value, which will determine how much the number 

range is reduced each time through the loop and therefore will determine the roughness 

of the resulting fractal. Normally we use as a roughness coefficient a floating point 

number in the range of 0.0 to 1.0.  Lets call it H, 2(-H) is therefore a number in the range 

1.0 (for small H) to 0.5 (for large H). The random number range can be multiplied by this 

amount each time through the loop. With H set to 1.0, the random number range will be 

halved each time through the loop, resulting in a very smooth fractal. With H set to 0.0 



the range will not be reduced at all, resulting in something quite jagged. Figure 4.2 shows 

three ridgelines, each rendered with varying H values. 

 

 
Figure 4.2 Ridgelines with different roughness coefficient values. 

 Adapted from (Peitgen and Saupe 1988) 

 

Using the above method height values can be generated very fast, and there are enough 

parameters (roughness coefficient, random number generator) which can be changed to 

produce different results. The height values are generated in powers of two, as an 

example after 10 iterations 1024x1024 are generated within milliseconds. Figure 4.3 

shows a wireframe terrain generated with the above algorithm (5 iterations, H=0.8) using 

a initial version of our terrain engine. 

 



Fig

ure 4.3 Terrain generated with the Diamond Square algorithm. 

 

 

 

 

4.2.2 Dynamic Paging 
The amount of data needed to store even modest size terrains is large and can easily 

overload the memory capacity of a machine. Therefore it is not possible to store all the 

terrain needed in memory at initialisation. Only a subset can reside in memory at any 

time and further data has to be swapped in/out on demand. The swapped data can be 

loaded either from another storage device such as the local hard disk or as in our case 

either loaded from the cache or be computed on the fly. This process is called commonly 

“Terrain paging”.  

 

In order to accommodate for such dynamic changes a specialised data structure and 

algorithm is developed which handles and determines when and what blocks should be 

swapped in or out. The algorithm deployed by the engine handles the terrain information 

in blocks, the whole terrain is divided into blocks, each block represents a part of the 

whole terrain it stores all the information needed to render this part of the terrain.  All 

blocks, which are in memory at a current time step, represent the active area for this time 

step. 

 



When the terrain engine is initialised the user is centred in the middle of the active area 

displayed and a bounding box is established around the user (centred in the middle of the 

active area). When the user reaches the bounding box in any direction, blocks in the 

opposite direction of travel are paged out, new blocks are paged in, in the direction of 

travel and the bounding box moves. This whole procedure is demonstrated in Figure 4.4 

for the case the user travels north. Similar are the cases for travelling south, west or east. 

In the case of a Northeast movement we would page North and then East, the other 

combined cases (NW, SW, SE) handled in a similar way. Note that the bounding box 

moves with active terrain area and is always at its centre. 

 

 
Figure 4.4 Active area and Terrain paging 

 

Care has to be taken in adjusting the size of the bounding box. If the bounding box were 

equal to the size of a block, edges of the new and old bounding boxes would coincide. 

The user could continually move back and forth across the boundary resulting in 



thrashing. Therefore a slightly bigger bounding box than the current block size (25% 

bigger) is used, to make sure that the user has travelled a certain amount in the direction 

of travel before paging takes place (Figure 4.5). The size of the bounding box can be 

adjusted though, as required by the speed of the user.  

 

 
Figure 4.5 Bounding Box for Terrain Paging 

 

 

4.2.3 Unlimited Terrain 
Although the form of terrain paging used is very general and does not depend on any 

hierarchical data structure implemented, it still has to be combined with the fractal terrain 

generation algorithm to produce additional terrain information which can be paged in.  

 

 The first parameter to be determined is how big are the blocks going to be and how 

many height values each block will contain. In the engine this is determined by the 

number of total iterations that are specified by the user to produce terrain using the 

Diamond Square algorithm. If N iterations were specified, the number of blocks will be 

the amount of values produced after N-3 iterations, and each block will contain height 



values equal to the ones produced after N-(N-3)=3 iterations. The amount of 3 iterations 

is not chosen randomly but tightly coupled with the LOD algorithm explained later. 

Explained briefly each block is subdivided using 3 iterations, which means 3 Level Of 

Detail. Figure 4.6 shows how blocks and data would be distributed if 7 iterations were 

specified. In this example the number of blocks would be produced after 7-3=4 iterations, 

which means (24 =16) 16x16 blocks and each block would contain (23+1=9) 9x9 height 

values. 

 
Figure 4.6 Block generation for terrain paging (7 iterations). 

 

Terrain Paging 

Now that the terrain is subdivided it can swap in/out blocks according to the terrain-

paging algorithm described. For each new block swapped the Diamond Square algorithm 

is applied to generate new height values. So for each new block its corner height values 

are computed and the algorithm is applied for 3 iterations. Using this technique the new 

terrain gets computed in small parts which can be handled easily by the system and 



doesn’t cause noticeable delays. In the case of Figure 4.6 for one swap in any direction, 

instead of applying the algorithm for terrain generation for 7 iterations to produce 

(27+1)x(27+1)=16661 height values, only (9x9)x16=1296 height values are needed. 

 

 

 

 

 

4.2.4 Matching up Blocks 
Although this algorithm may seem simple it suffers from a serious flaw. The problem is 

how to specify the height values for the new corner points. Not just any random value can 

be used as a corner height because when it comes to apply the terrain generation 

algorithm the vertices which are common in neighbouring blocks might not match. 

Figure 4.7 explains this problem in more detail. Suppose a new block was just swapped 

in, on top of an already existent old block, and new height values are generated for its 

interior with the Diamond Square algorithm. For demonstration purposes it is assumed 

that only one iteration per block is needed, which means each block has 21+1=3 height 

values.  

  

It can be clearly seen that the two blocks share a side and have points in common. For the 

fractal algorithm to generate new height values inside the new block the initial corner 

height values for the this new block have to be provided. One solution would be just to 

copy the common corner height values of the old block to the new one, determine 

randomly the height values for the other two and apply the algorithm.  

This naïve approach would not work because there would be differences in the height 

values in common interior points (Figure 4.7). These differences are caused because of 

the random nature of the algorithm used. In essence what we do is generate height values 

for each block separately, so each common point at a border does not have knowledge of 

the height values which are next to him on a different block. 

 



 
Figure 4.7 Matching up two neighbouring Blocks 

 

Altering the Diamond Square algorithm slightly to work for these cases solves this 

problem. Before applying the algorithm we copy not only the height values of the 

common corner points to the newly created block but also all the interior common points. 

When applying the algorithm onto the block we do not allow these values to change, but 

only influence the other values which are generated. The positive side-effect of this 

technique is that although the border points do not change, smooth transitions between 

tiles are generated because they influence the height generation of other points.  

Note that a newly created block can have neighbouring blocks on more then one side (in 

case of Figure 4.7 there could also be a block to the left or right). All border values 

inclusive corner values are copied to the new block, any corner point for which a height 

value was not specified (copied) from the neighbouring points will be given a random 

value. 

 

 

 

 

 

 



4.2.5 Natural appearance 
Although the problem of matching up neighbouring blocks is fixed and there are no gaps 

anymore, there are still some problems to be solved. The actual terrain displayed does not 

look natural, the new blocks generated would look unnatural rough and steep. The roots 

of the problem lie again in the random nature of the terrain generation algorithm.  

 

Specifically the problem lies in determining the random values at the corners of the new 

blocks. Some corner values get determined by copying from neighbouring blocks but the 

rest of the remaining corner values are determined randomly. This is what causes the 

problem, and introduces unnatural artefacts such as the terrain getting suddenly rough or 

sudden changes in altitude.  

The specification of the new corners at random causes these artefacts because they are 

not correlated with the corner points of the blocks around them. Every corner height 

value of a block does get randomly determined, resulting in sudden changes and 

uncontrollable behaviour. We must somehow correlate all the corner values of the new 

blocks generated with corner values of the already existent blocks. 

 

To solve this problem the nature of the fractal algorithm used has to be examined more 

closely. When applying this algorithm to an area or block all the values, which are 

determined at the beginning and don’t change during the algorithm (as the corner values), 

influence all the generated values. The newly generated values are interpolated from the 

already existent ones and a random perturbation is added. This means that when 

specifying the corner values, more or less, the resulting values that are generated inside 

are interpolated from these corner values and exhibit a common behaviour. If two of the 

corner values are low and the other high the resulting terrain will (with random 

perturbations) have an uphill behaviour from the low points to the higher ones.  

In our case we interpolate a large initial area and cut it up into blocks. The points 

generated including the corners of the blocks are determined by the values of the corner 

points of the large area. Now if we swap in additional blocks their corner values and 



hence also their values inside will have a completely different, random behaviour, and 

introduce sudden unnatural changes to the terrain.  

 

To avoid these problems we would have to generate each time an area in the direction of 

movement as big as the initial area interpolated. Having computed all the height values 

for the whole area we can use these values as corner height values for the new blocks. 

This technique avoids artefacts because the computed height values are not random 

chosen anymore, but are interpolated using the Diamond Square algorithm from a much 

bigger area. The drawback of this technique is that it is very expensive to generate the 

required height values for large areas every time we swap in/out terrain.  

Although we only would have to perform as many iterations needed to compute the 

corner values of the blocks, which would be N-3 iterations (N: initial iteration specified 

for whole terrain), these computations would cause a noticeable delay because they have 

to be performed in every swap. Figure 4.8 shows the difference between the two 

techniques, (a) shows how the paging technique, which causes artefact problems and (b) 

the new artefact free technique, which is much more computational expensive.  

Lets not forget that our aim was to specify the corner values of the new blocks. After that 

each new block is matched up with other neighbouring blocks and subdivided (3 

iterations). In Figure 4.8 we assume that the terrain is cut into 4x4 blocks (2 iterations). 

Each block would be normally again subdivided with 3 iterations, which indicates that 

the initial iterations specified by the user were 2+3=5. 

 

 



Figure 4.8a The two different techniques for terrain paging using fractals 

 
Figure 4.8b The two different techniques for terrain paging using fractals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4.2.6 Caching  
It has already been shown that in order to avoid artefacts we have to perform more 

computations dividing up the whole area to produce correlated height values.  

 

Although these additional computations are more expensive, they do not have to be 

repeated for every swap. Because we actually produce much more information than 

needed at this time, caching gives an essential speed increase. Having produced all these 

new height values for an area, which is not in the cache, we store them in the cache for 

retrieval when needed.  Until they are replaced by another area in the cache any point 

within the area will be immediately available. Due to locality of movement the area will 

only be replaced when the user has left the region and new data has to be computed.  

 

The size of the cache determines how many areas can be held in memory concurrently, 

ideally this would be a size of 8 areas. This means that it would be possible once a new 

area is entered, to cache all the surrounding areas and no computation, regarding the 

corner height values will be needed for movement within that region. 

 

Once again it is very important to understand that only the corner values are computed 

using this process. Even if an area has to be subdivided, it will be subdivided with N-3 

iterations (2(N-3)+1 points) in order to form the blocks and not with the full N iterations  

(2N+1 points) specified by the user. The missing 3 iterations will be performed for each 

block separately as it gets swapped in.  

In Table 4.1 we describe the whole process of  paging fractal terrain as with pseudo code. 

 

 

 

 

 



 

Perform Diamond-Square Algorithm on initial area (N iterations) 

Cut area into block and divide data 

While (not finished) 

{ 

   If (user out of bounding box) 

   { 

          Swap in new blocks 

 

         For each new block do 

          { 

           If (new corner values needed in cache)  

                { 

                      Copy corner values from cache to the blocks 

                } 

          else{ 

                                  Perform Diamond-Square for new area (N-3 iterations) 

                      Cache computed data 

                      Copy corner values from cache to the blocks 

                } 

             

             Match up new block with neighbours 

            Perform Diamond-Square algorithm to block (3 iterations) 

         } 

   } 

   Get movement input from user 

} //not finished 

 

 

Table 4.1 The paging algorithm for fractal terrain in pseudo code 

 



 

 

4.2.7 Controlling Fractal Terrain 
Until now the issue about how to combine terrain paging and fractal terrain generation to 

produce dynamic and unlimited terrain has been addressed. Nothing was said about the 

other problems that fractals exhibit, their uncontrollable nature. Since the detail  is 

generated on the fly, somehow it has to be made sure that it is always the same. When 

returning to a place previously visited, you don’t want it to have changed.  

This is accomplished by controlling the random number generator.  Each random number 

generator has to be initialised with a seed number, if the same seed number is supplied 

each time, the same random numbers will be produced. Based upon this fact if we had a 

method with which we would generate for every point the same random number, we 

would produce always the same random perturbation values and hence the same terrain.  

 

In order to determine the random perturbation for a point we use its co-ordinates as its 

seed value. Using this technique we will generate for each point always the same seed 

value and hence the same random perturbation.  

 

 

 

 

 

 

 

 

  

 

 

 

 



 

 

 

4.3 View Frustum Culling 
 

View frustum cullers (VFC) are typically used in virtual reality software, walkthrough 

algorithms, scene graph APIs or other 3D graphics applications. In this section an 

essential and specialised VFC algorithm is developed for the terrain engine. 

A frustum consists of six planes, where two are parallel to each other (Figure 4.9).For 

orthogonal viewing the frustum is a box, and in the case of perspective viewing, the 

frustum is a truncated pyramid, which is the frustum that we consider in this project.  

 
Figure 4.9 Viewing Frustum 

 

In order for a VFC algorithm to perform efficiently a data structure has to be developed 

which consists usually of Bounding Volumes (BV). Each BV encapsulates a number of 

primitives that have to be drawn. Often in tree like structures such as scene graphs (a 

scene graph is a directed acyclic graph, where each node has a BV attached to it), there 

are also BV which encapsulate other BV and so on. This idea of hierarchical frustum 

culling was first documented by Clark (1976), and leads to dramatic speed increases as 

large amounts of BV (i.e. Geometry) are culled from the frustum. 



A view frustum culler culls away the Bounding Volumes that lie outside the view 

frustum, i.e. those objects that are outside the users field of view. In general we have 3 

cases, a BV can be completely outside, completely inside or can intersect the frustum 

(partly inside and partly outside), it depends on the implementation how this last case is 

handled. 

 

A specialised and highly effective algorithm for a particular case of BV (Bounding 

Boxes) will be developed. The initial idea is based upon (Greene 1994). 

 

 

4.3.1 Overlap testing for a Plane and a Bounding Box 
Often in culling or clipping to a view frustum it is necessary to “classify” a bounding box 

with respect to a plane as either lying completely on one side or as intersecting the plane. 

Normally this involves performing tests on all of the vertices of a cube. Each of these 

tests requires the evaluation of the plane equation (3 multiplies and 3 adds times 8) which 

requires 24 multiplies and 24 adds. This method is too expensive and too general, we 

would like to reduce the amount of operations performed for the special case of 

rectangular bounding boxes (both arbitrarily oriented OBBs and axis-aligned AABBs). 

 

It seems unnecessary to check all of the points with respect to a plane when the only 

points needed are the extreme points, when projected onto the axis defined by the normal 

of the plane. This means finding the farthest vertex in the direction of the normal (p-

vertex) and the farthest vertex in the negative direction of the normal (n-vertex) (Figure 

4.10). These points can be determined quite quickly. 

 



 
Figure 4.10 Positive far point (p-vertex) and Negative far point (p-vertex). 

 

If the normal of the plane is defined in the box’s co-ordinate system we can simply divide 

the cube in octants and then test in which octant the normal points to, once placed in the 

middle of the box. If the octant is found, the point which resides in that octant is used. 

To transform the plane normal to the box’s co-ordinate system, we just have to project 

the normal onto the normalised axis vectors of the box.  

This can be performed by three dot products. Given the box normalised axis vectors 

Xaxis, Yaxis, Zaxis and the plane normal, we can calculate the normal N´ in box co-

ordinates as follows: 

N´= ( dot(N,Xaxis), dot(N,Yaxis), dot(N,Zaxis) ) 

This involves the evaluation of  (3 dot products,  3 multiplies , 2 adds each times 3)  9 

multiplies and 6 adds. The above procedure is performed in the case of oriented bounding 

boxes, but for axis aligned bounding boxes N´=N and no transformation has to be 

performed. The transformation done is merely the “identity”. 

 



Having computed the plane’s normal N (now N´ is changed to N) in the box co-ordinate 

system, we can quickly perform a set of conditional tests to find out in which octant the p 

and n vertices are. In pseudo code this is 

 

 If (N.x>0) 

{ 

  If (N.y>0) 

    If (N.z>0) {Right Top Front} 

    Else {Right Top Back} 

  Else 

   If (N.z>0) {Right Bottom Front} 

   Else {Right Bottom Back} 

} 

Else 

{ 

  If (N.y>0) 

    If (N.z>0) {Left Top Front} 

    Else {Left Top Back} 

 Else 

   If (N.z>0) {Left Bottom Front} 

   Else {Left Bottom Back} 

} 

 

The above code determines the p-vertex. Setting N=-N will find the n-vertex. 

 

The p and n vertices have now been computed with 9 multiplies, 6 adds and 3 

comparisons for each point resulting for both points in 18 multiplies, 12 adds, 6 

comparisons, and 3 negations to get the –N. That is for the general orientation case, but 

with axis aligned boxes only 6 comparisons and 3 negations are required. However if 

advantage of the symmetry that the boxes exhibit is taken into account, the n-vertex can 

be found as being the opposite corner . In this case only  9 multiplies, 6 adds and 3 



comparisons are needed for the general case, and only 3 comparisons if the boxes are axis 

aligned. 

 

Having found the extreme points the usual test for determining on which side of the plane 

these points are is applied. The half space determined by the plane in the direction of the 

normal is referred to as “outside” and the other half space as “inside”. If the n-vertex is in 

the “outside” half space then the whole box is considered to be outside. If the p-vertex is 

in the “inside” half space then the box must be completely inside. Otherwise the plane 

intersects the box. 

 

For the above tests in the worst case an additional of 6 multiplies, 6 adds and 2 

comparisons are required, resulting in the following overall results. 

 

Previous methods: 24 multiplies, 24 adds and more comparisons than new methods 

 

Arbitrarily oriented (OBB): 15 multiplies, 12 adds, 6 comparisons 

 

Axis Aligned (AABB): 6 multiplies, 6 adds and 5 comparisons 

 

 

 

4.3.2 Culling in the Terrain Engine 
Having now the basic tool for performing culling against a plane. Modelling the view 

frustum as a set of 6 planes we are able to implement full view frustum culling. The 

method, with which the terrain area is divided into blocks, lends itself perfectly to the 

above method using Axis Aligned Bounding Boxes (AABB).  

Each block in our terrain structure has an AABB stored with it. The AABB is determined 

when the geometry for the block is formed, and thus encloses all the geometry. Therefore 

performing the above test can quickly and accurately determine if any of the points inside 

the block is visible.  



This VFC algorithm can achieve speed ups of 2-10 times depending on the scene. 

 

   

 

 

 

 

4.4 Level Of Detail 
 

Although Frustum culling does a good job and culls away large parts of geometry, there 

are still enough primitives in the viewing frustum to overload the pipeline completely. To 

reduce the load even further we have to apply a Level Of Detail algorithm to the scene 

which is still visible. As described in previous sections LOD algorithms are based on a 

simple rule, they represent geometry, which is further away and has a small projection on 

the screen with fewer primitives.  

 

 

4.4.1 The basic algorithm 
In our engine we deploy a simple but highly effective algorithm for surface 

simplification. We employ a block based simplification scheme and base our LOD 

criterion on distance.  

This means that we represent the geometry in blocks and display these blocks in various 

Levels Of Detail depending on their distance to the user. If a block is near to the user all 

the geometry is used to display it and the further the blocks get from the user the less 

geometry is used to represent the same object. 

 

For the block representations we will use the blocks which we use to do the swap in/out 

and the view frustum culling. This representation is very convenient because it connects 

all the main stages into one clear pipeline.  



The blocks from the active area, which consists of old blocks and newer ones, which 

were swapped in/out, are first culled against the frustum and finally drawn with different 

Level of Detail. The only problem is how exactly are we going to measure the distance 

from the user and how the blocks are going to be simplified into lower level of detail. 

 

 

 

 

 

4.4.2 Distance based Simplification 
The Level Of Detail, which will be used for a block, is determined by the distance 

between the user and the centre of a block. Each block will be represented with 3 levels 

of detail, high, medium and low.  

In essence the remaining blocks will be categorised into 3 resolutions and the area split 

up into 3 sub areas. One area (near to the user) will display the high detail blocks, the 

middle area will display blocks in medium resolution and the third area (furthest away) 

will display blocks in low resolution. The areas will build homocentric circles around the 

user (Figure 4.11). 

 



 
Figure 4.11 Multi-Resolution Rendering of Blocks 

 

The radii of the various resolutions can change and are adjustable to the preference of the 

user  

 

 

 

 

4.4.3 Block Simplification 
After determining at what resolution to draw the blocks, we have to determine how to 

actually simplify the geometry represented by the block. Again we can couple this 

demand magnificently and effectively with our fractal terrain generation algorithm. 

Section 4.1 described that the fractal algorithm produced fractal terrain by subdividing 

the initial area according to the iterations specified by the user. Assuming that the user 

had specified N iterations, we divided the area for paging into as many blocks as were 

produced with N-3 (2(N-3)) iterations, and each block would store the points produced by 

remaining 3 iterations applied to it.  



 

Observing that each iteration applied onto an area inserts more points (i.e. detail). We can 

consider that a block after 3 iteration applied to it, is represented with more Level Of 

Detail than if it would be subdivided with 2 (medium LOD) or even 1 (low LOD) 

iteration. Therefore we can draw each block with different LOD’s just by taking the 

points produced by the fractal algorithm on different stages of the subdivision process. 

The more subdivision the more detail. Figure 4.12 shows a block as produced by the 

fractal algorithm and how an area represented with these blocks can be rendered in 

various levels of detail.  

 

 

 
Figure 4.12 Terrain management with multiple levels of detail 

 

With increasing distance to the user, each block is subdivided less often, resulting in a 

coarser representation of the terrain. Regions further away are smaller on the screen, so 

the absence of detail goes unnoticed. As a block comes nearer its representation is 

refined.  

 

The savings from the LOD algorithm are large. A high resolution block (3 iterations) is 

represented with (23+1=9) 9x9=81 points, at medium resolution (2 iterations) it is 



represented with (22+1=5) 5x5=25 points and at low resolution (1 iteration) with just 

(21+1=3) 3x3=9 points. Because these Levels Of Detail are already produced as part of 

the landscape generation algorithm there is almost no overhead in computing the points 

for a specific resolution and triangulating the block. The savings in rendering time are 

vast and the speed up tremendous. 

 

 

4.4.4 The Gap Problem 
One of the problems associated with dynamic changes of polygon resolutions is 

connecting blocks of different resolutions. Most often, small gaps along the edges will 

appear, since not all of the points on an edge are shared between the two blocks of 

different resolution. This can be seen in Figure 4.13 where point D is not common in both 

resolutions. One solution to this is given in DeHaemer and Zyda (1991), where the 

vertices of the higher resolution along with the points of the lower resolution are all used 

to form polygons to cover the gaps (i.e. in Figure 4.13 the points A, B, C, D, E would 

form 3 triangles). One drawback of this technique is the introduction of additional 

triangles to cover each gap. The solution used was is to use a number of triangles in the 

y-z planes (with appropriate lighting and texturing to cover the edges) to fill in the gaps. 

In Figure 4.13 we would draw the triangle CDE. Chapter 5 will elaborate more 

thoroughly on this issue. Figure 4.14 illustrates the problem of gaps in the terrain in our 

terrain engine before applying any solution. 

 



 
Figure 4.13 Gaps between different resolutions 

 

 

 

Figure 4.14  Gaps generated in the terrain. 



 5. Implementation 
This chapter will discuss how the main algorithms were implemented and any problems and alterations that 

occurred. 

 

 

5.1 The Classes 
 

In Figure 5.1 a diagram of the classes developed is shown. Each of these classes 

encapsulates one or more of the algorithms and functionality described in Chapter 4. 

Below is a short description of each class. 

Tworld Superclass, handles the main events of the terrain engine such as 

terrain paging, Level Of Detail and Culling of Blocks.  

 

Tterrain Encapsulates the fractal terrain generation algorithm, given a area 

it produces the height, colour and Normals for it. 

Tblock Represents a block of the area, which is handled by the Tworld 

class. Stores all information needed for this particular area it 

represents. 

Tcache Caches terrain area previously visited for later use. 

 

Of course there are other friend functions especially in the main function, which handle 

call-backs (keyboard, mouse, display, timing), load textures, generate random numbers 

and initialise the engine. Figure 5.1 shows a class diagram of the engine. 



 
Figure 5.1 Class Diagram 

 

 

5.1.1 Data Structures 
The TWorld class handles and implements the algorithm for dynamic paging. The data 

structure used for was a Heap-Sorted Quadtree. All nodes were stored in an array, in heap 

sort order. A traditional tree structure with pointers was avoided, because of the delays 

that would be caused by following the pointers to find the final node.  

 

For a dynamic environment like terrain, a simple data structure is more beneficial. The 

nodes (blocks) are represented by the TBlock class and were stored in a 1D array. Each 

cell of the array stores a pointer to a block (TBlock class), using this pointer no copying 

of blocks is needed when swapping. When a swap occurs only the pointers are copied 

and not the objects.Memory allocation, which is very time consuming is  only done at the 

beginning. When new blocks have to be swapped in, the old blocks are just swapped out 

and their memory is used instead of allocating new memory. There are no memory 

allocations done at run time, nor is any other memory after the initialisation phase. 

 

 

 

 



 

 

5.1.2 The Random Number Generator 
Usually just generating random fractal terrain is not sufficient. In order for a terrain 

engine based upon fractal technique to be usable control over terrain generation is 

required. The random number generator used provides this feature by basing its random 

values for a point upon its co-ordinates.  

 

Clearly if the same seed is used to initialise the random number generator the same 

random number will be generated. To determine the seed for a point in our world we 

construct the seed by its x, z co-ordinates. The random value produced is then used to 

perturb the existing height value (y co-ordinate). 

The function used to determine the seed is given below. 

 

Seed = 7*x*z + 5*x + 9*z + Variation; 

 

This function gives a very good distribution of the random seed over the world space. A 

good distribution of the seed values is needed to avoid repeating height values. 

 

 

5.1.3 Terrain caching 
Generating random terrain is not inexpensive in terms of time needed for computation. 

An efficient caching scheme which caches any previous values generated for a patch 

would give a defined speed increase. The TCache class caches any new height values 

generated by the TTerrain class before they are cut up into blocks (TBlock class).  

If a specific point is needed when blocks are swapped in (usually new corner values) then 

it is first looked up in the cache before any computation is done. In most of the cases 

(except when the user leaves the area completely) any required value has been previously 

computed along with other surrounding values and is therefore already stored. This 



avoids costly re-computations, by avoiding the execution of the fractal terrain generation 

algorithm. 

 

The cache implemented can keep as much as 8 areas at any one time. Usually this means 

that all the areas around the user have already been computed and stored in the cache. If 

the point requested is not in the cache, the whole area in which is resides is computed 

(using the fractal algorithm) and stored in the cache before the actual point is returned. 

The Last Recently Used (LRU) order is used for determining which older areas is 

replaced by a newly computed one. Figure 5.2 shows the concept of the cache. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 The cache scheme 
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5.2 Level Of Detail 
 

5.2.1 The distance metric 
Before rendering each block its Level Of Detail has to be computed. To compute a Level 

Of Detail for a particular block we have to find it distance from the user. To repeat this 

procedure for every visible block and for every frame that has to be displayed is too 

expensive. A method has to be found to avoid re-computation of the LOD values for a 

block at every frame. A metric is needed for determining when re-computation of the 

LOD values is required. 

 

Before determining a condition  (metric) which will indicates when re-computation is 

needed, a few assumptions have to be made. 

 

1. At every point in time the terrain is displayed with 3 Levels Of Detail (High, 

Medium, Low). 

2. The distance between the homocentric circles (borders) which determine when a  

Level Of  Detail starts must greater than or equal to the length of the diagonal of 

the blocks used. Each Level Of Detail must at least as far away from the next one 

as is the length of a diagonal of a block. 

 

Because the distance computed is always the distance from the user to the centre of a 

block, the above rules ensure that once a Level Of Detail is computed. It only needs to be 

re-computed when the user has moved (with respect to its position when the LOD values 



were computed) more than half of length of the diagonal (of the blocks used). Otherwise 

the new LOD values will be just the same as the ones initially recomputed. The Level Of 

Detail algorithm will give a different LOD value for a block, only if the user has moved 

more than the length of its diagonal with respect to where he was when the block was 

given a new LOD value. 

 

Looking at how the terrain paging works with the use of a bounding box, a condition, 

which is based upon the above rules, already exists. If the Level Of Detail is determined 

when the Bounding Box is established, it has to be changed only when the actual 

bounding box changes and swapping occurs. Because the bounding box is nearly the size 

of a block, every move of the user inside it is not going to change the actual distance 

between the user and the centre of all other blocks (i.e. their LOD). Only when the 

borders of a bounding box have been crossed and swapping of new blocks is performed, 

have the new Level Of Detail values to be computed. 

 

Using the above model allows the expensive calculations to be postponed and the user 

can move happily inside the bounding box until a condition is reached (i.e. the borders of 

the Bounding Box crossed). Thus the terrain-paging algorithm is connected to the Level 

Of Detail algorithm resulting in massive time savings, without impairing visual quality or 

the correctness of the LOD algorithm. Figure 5.3 illustrates this technique for a terrain of 

5x5 blocks as active area.  

 

 

 

 

 

 

 

 

 

The user can move inside the bounding 
box (dotted line) without any Level of 
Detail calculations being  performed for 
the surrounding boxes . 



 

 
Figure 5.3  Bounding Box and Level Of Detail calculations 

 

 

 

 

 

 

 

5.2.2 Cracks 
One of the problems encountered when using multiple levels of detail in the same 

representation is mentioned in chapter 4.4, these are the gaps (Figure 5.4) which result 

from adjoining blocks represented at different levels of detail. 

 
Figure 5.4  Cracks between two levels of detail 

 

The problem is handled in the terrain engine by inserting triangles in the vertical y-z 

plane which cover the gaps. These triangles are smooth shaded and colour interpolated, 



using vertex normals which have been averaged with adjoining triangles, resulting in 

smooth and not abrupt transitions. 

Advantages Easy and fast solution. Usually need only a few small triangles to 
cover the gaps. Because the difference between two Levels of Detail 
regarding the triangles is big, the few additional vertically rendered 
triangles add little cost. 

Disadvantages Generation of artefacts in shading if gaps are big (not normally the 
case). 

 

The above approach was taken because of the good results it gave optically and because 

of the small overhead involved. Nevertheless other solutions were also examined and 

partially implemented. Below is a list of several possible solutions. Although these 

solutions may not be necessarily worse than the one used, they involved either more 

computation or more artefacts. For the terrain generation scheme used, the current 

solution was found to be ideal with respect to cost and the quality provided. 

 

1. Force every vertex on the edge of a high LOD block to be also present on the low 

LOD block. 

Advantages Good solution, there are never visual anomalies 

Disadvantages More polygons rendered than needed, and Low LOD blocks exhibit 
“star burst” like artefacts at the sides where joined with higher LOD 
blocks 

 

2. Build transition tiles from one resolution to the other 

Advantages Low polygon solution. Good visual results. 

Disadvantages Need a lot of memory and management to cover all combinations of 
high and low detail block arrangements. 

 

3. Force the edges of all low detail blocks to be lower than any vertex along the  edges 

of the high detail blocks. Since the user is always on high detail areas gaps  are 

never seen. 

Advantages Simplicity. Lowest polygon solution 

Disadvantages Not always feasible. Gaps can occur when at high altitudes or rough 
terrain. 

 



4. Use specialised “continuous LOD” algorithm. These algorithms work with exact 

 error metrics of the parts simplified, smooth edge contractions and vertex moving. 

Advantages Best looking solution. Eliminates pops. 

Disadvantages Very difficult implementation. 

 

5. Clear the screen with a special background colour to make the gaps as  imperceptible 

as possible. 

Advantages Simplicity. No additional polygons needed. 

Disadvantages Gaps are noticeable for some parts of the terrain if it is coloured 
with different colour values on different parts or drawing any areas 
with a sea layer in it. 

 

A birds eye view, looking  down on to the terrain represented with several Levels Of 

Detail can be seen in Figure 5.5. The blocks rendered with different Levels Of Detail can 

clearly be recognised. Figure 5.6 shows the actual terrain view with LOD and Culling on 

(top) and off (bottom). Note that the visual quality is not impaired and there is a large 

difference in frames per second and triangle count (on title bar). 

 

 

 

 

 

 

 



 
Figure 5.5  Birds eye view on different LevelsOf Detail 

 



 



 
Figure 5.6 Actual view with LOD and Culling switched on (top) and off (bottom) 

 

5.3 The Pipeline 
 

The terrain engine can be seen as a simplification pipeline, which resides in front of the 

actual rendering (OpenGL) pipeline. It produces the geometry, simplifies it using 

specialised algorithms and finally sends the reduced geometry and instructions on how to 

render it down the graphics pipeline. Figure 5.7 shows a flow chart of the pipeline. 

 

Note that at the triangulation phase the remaining blocks are triangulated using triangle 

strips. A greedy insertion (Evans et al. 1996) scheme was used to triangulate each block 

at various levels of detail. This scheme was implemented easily because of the grid 

representation used. On average 8-16 triangles are rendered with each strip. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Terrain Engine Pipeline 

 

5.4 Environmental Aspects 
 

Although an important part of any terrain engine is to generate and simplify the actual 

terrain geometry another important area which should not underestimated is the use of 

additional techniques, which increase the environmental cues, enhance the features of the 

terrain and finally add to a better visual quality. These features and techniques are called 

Environmental Aspects. 

 

 

Was the bounding box crossed and 
new terrain has to be swapped in 

Cache 

Swap in new Blocks 

Compute LOD 

Cull Boxes 

Triangulate using  triangle 
strips

Pass to rendering pipeline along with 
other information such as colours, 
normals, texture co-ordinates. 

Yes 

No 



5.4.1 Colour Mapping 
The interior colour of the triangles drawn is determined by interpolating the colour values 

at its vertices. Therefore to determine the colour value at the vertices is an important task.  

 

The colour values in the terrain engine for a particular vertex are determined primarily by 

its height, position relative to the light source and the angle of its normal.  

The terrain is divided in to 3 parts lowlands, highlands and mountains. Each of these 

parts is again divided into 2 parts respectively. Furthermore terrain vertices are 

additionally tested for their angle between their normal and x-z plane. If this angle is 

below 28° they are considered cliffs, and below 48° and above 28° they are categorised 

as slopes.  

 

For each category a different colour value is specified from a default palette, but this can 

be adjusted by the user. Furthermore, the exact height boundaries where each category 

starts and ends can also be defined by the user. By default the distribution is as follows.  

 Mountain High: Below 100%, white colour. 

 Mountain Low: Below 85%, light grey colour. 

 

 Highlands High: Below 70%, brown colour. 

 Highlands Low: Below 50%, greenish brown colour. 

 

 

 Lowlands High: Below 30%, medium green colour. 

 Lowlands Low: Below 10%, light green colour. 

 

 Cliffs: Below 28°, dark grey colour. 

 Slopes: Between 28° and 48°, greenish grey colour. 

 



The percentages are given for range between Max Height and sea level. See Colour Plate 

I.1 (Appendix A) for an example of colour mapping as it is used in the engine (default 

settings).  

 

 

5.4.2 Texturing 
Textures play an important role in the visual quality and natural appearance of terrain. 

The textures used in the engine are blended (modulated) with the underlying colour 

values of the triangles to give optimal results.  

Sea and clouds are modelled by applying appropriate textures to meshed or flat 

respectively planes.  

 

Dynamic texturing 

Because natural phenomena such as clouds or sea are never static and always moving, a 

special texture technique is applied. This technique is called “Dynamic Texturing” and is 

useful for representing dynamic objects. The basic difference is that instead of applying 

one static texture with the same texture co-ordinates every time, the actual texture co-

ordinates get translated over time. This results in the texture appearing as it is moving 

giving valuable hints to the user about the nature of the object represented (water, 

clouds). 

 

Alpha blending 

Many natural objects such as clouds are partly transparent. Therefore someone can see 

through the clouds either to the sky or the ground. Traditionally, implementing this 

transparency effect on a low-end graphics workstation was not feasible. Now, with the 

advent of accelerated graphics boards, it is possible to model transparent layers in real 

time. The clouds in the terrain engine are optionally modelled as partially transparent 

textures. Therefore in addition to moving clouds, there is also the possibility to see 

through them giving unique visual results. 

 



See Colour Plates I.2, I.3 (Appendix A) for examples on the above techniques. 

 

 

5.4.3 Waves 
Another optical cue, which gives valuable information about the objects and their nature, 

is animation. Wave animation for the sea-plane is modelled by triangulating the sea plane 

and distorting each of the vertices by a specified amount. The amount of distortion is 

computed by mapping a sinusoidal function, which changes phase and values over time, 

over this 2D mesh. The characteristics of the sinusoidal function (amplitude, phase and 

frequency) can be controlled so as to model different conditions (still water or storms). 
 
 
 

5.4.4 Fog 
Rendered images tend to seem unrealistically sharp. While antialiasing makes objects 

appear more realistic it is still very computationally intensive. By adding fog we get 

much more realistic effects making objects fade into distance. Fog can be used to model 

atmospheric effects like haze, mist, smoke or pollution. 

Objects that are farther from the viewpoint begin to fade into the fog colour. The terrain 

engine uses fog to model atmospheric attenuation and hide the far clipping plane. 

 

Underwater environment 

Fog is also used for modelling the underwater environment. The terrain engine enables 

the user to fly freely around and to dive under the sea. The parts of terrain which are 

under the sea have to be modelled in a different way to give the feeling that an 

underwater environment has been entered. Greenish-Blue fog with high density is 

successful used to simulate this effect. Colour Plate I.4 (Appendix A) shows an 

underwater scene of the engine.  

 

 



6. Results 
This chapter will summarise the results from the algorithms implemented and the 

performance of the terrain engine. The performance will be measured by the number of 

triangles actually rendered and the frames per second achieved . 
 

 

6.1 Performance Results 

 
The underlying philosophy of our approach is to reduce the overall load of the system, by 

not drawing what is not seen and to draw at different levels of resolution what is inside 

the view frustum. 

 

Measures were taken from typical data sets produced by 7,8,9 and 10 iterations. The 

data points were mapped on a 24x24-kilometre area, with intervals depending on the 

points produced. The pixel resolution used was 1024x768. 

 

The system used for testing the terrain engine was a Pentium II (350 MHz) with 128 Mb 

RAM system memory and with a 16 Mb 3D graphics accelerator (Riva TNT) card. 

Although the choice of the system does not affect the final number of triangles which 

must be rendered, it affects the update rates (frames per second) that can be achieved. 

 

Figures 6.1, 6.2, 6.3, 6.4 show performance data taken from a low altitude flight over a 

period of 400 seconds for landscapes generated with a differing numbers of iterations. 

The triangle count and frame rate were sampled every 2 seconds. Each figure shows the 

number of triangles rendered over time, the average frames per second and the total 

number of triangles of the original area. 

 



Keeping in mind that current low-end systems are able to display about 30-40 thousand 

triangles at real-time (>25 fps) or interactive (>10 fps) frame rates, the results show 

immediately the good performance of the terrain engine. 

With 7 iterations (Figure 6.1) the average frame rate was 86 fps and 3292 triangles were 

rendered with Culling and Level Of Detail enabled. Without any Culling and Level Of 

Detail techniques applied the frame rate would be 24 fps and 32.768 triangles had to be 

rendered. 

The results for other number of iterations as shown in Table 6.1 illustrate even greater 

reductions in the numbers of triangles rendered and increases in the frames per second 

achieved.  

 

Iterations Lod and Culling 

techniques enabled 

Average number of 

triangles rendered 

Average frames per 

second achieved 

7 Yes 3,292 86 

7 No 32,768 24 

    

8 Yes 11,816 32 

8 No 131,072 6 

    

9 Yes 45,000 9.5 

9 No 524,288 1.7 

    

10 Yes 169,000 2.5 

10 No 2,092,152  

Table 6.1 Comparison of results with and without Culling and Level Of Detail techniques applied 

 

 

 



Figure 6.1 Comparison of number of triangles rendered to number of triangles in the original model for 7 

iterations. 

 



Figure 6.2 Comparison of number of triangles rendered to number of triangles in the original model for 8 

iterations. 



Figure 6.3 Comparison of number of triangles rendered to number of triangles in the original model for 9 

iterations. 



Figure 6.4 Comparison of number of triangles rendered to number of triangles in the original model for 

10 iterations. 

 

The techniques used have reduced the number of polygons rendered per frame by an 

order of magnitude for 7 iterations and almost 2 orders for 8,9 and 10 iterations.  

Thus the terrain engine is able to produce and visualise highly detailed landscapes in 

real-time, not feasible before on low-end systems, without any change on hardware 

specifications. 

 

Figure 6.5 illustrates the difference with side by side images of the same scene in 

wireframe. The left image is rendered at full resolution and the right with culling and 

level of detail algorithms applied. Figure 6.6 shows the same scene textured and with 

environmental aspects enabled. Colour Plate I (Appendices) presents more screenshots of 

the terrain engine in action.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.5  The same frame in full resolution (left) and with culling and level of detail (right) 

 

 

 



 

Figure 6.6  The above frame on the right with texturing and environmental aspects. 



7. Future Work 
The possibilities for extending this project into other areas are practically endless. There 
is always a better algorithm or some new effect, which can be applied. In this chapter 
areas for further work and experimentation are highlighted. 
 

 

7.1 Eliminating popping 
One mostly unavoidable artefact which is inherent in many Level Of Detail algorithms is 

the so called “popping effect”. This effect is caused when one area or block, which was 

previously represented with lower resolution, is now represented with a higher resolution 

because the user moved towards it. The differences and the sudden change in the 

representation as new vertices are inserted during this switching between two levels of 

detail  are noticeable to the user as “popping”. 

 

One technique to reduce the undesired optical effects caused by popping is to make 

alpha blended transitions between the low detail block and high detail block over a 

number of frames. Instead of just switching straight to the other level of detail, the 

transition is made gradually over some frames blending from 100% low detail block and 

0% high detail block to 0% low detail block and 100% high detail block.  Using this 

blending technique the sudden popping will be reduced to an extent where it is not 

noticeable (Woo et al. 1997). 

 

The other technique which avoids popping completely but is more tedious to implement 

is called “geomorphing”. This technique applies the same principle by creating a 

gradually transition from one Level Of Detail to another, but rather than use blending the 

actual vertices are moved from the position where they were originally to the new one. 

The vertices are thus morphed over different frames. 

 

 

 



 

7.2 Continuous Level Of Detail 
The block based LOD algorithms have certain disadvantages, which were discussed, in 

the previous section. These disadvantages can be completely overcome by employing a 

different Level Of Detail scheme which is called “continuous level of detail” (Lindstrom 

et al. 1996). In this technique instead of adaptive subdivision we use edge collapses and 

vertex moves to produce the new level of detail. These algorithms are far more complex 

and employ heuristic techniques to determine which operation should be performed. 

Furthermore it would be more difficult to apply them to the fractal terrain technique 

used. 

 

The current LOD algorithm is only based on distance and produces non-optimal 

simplifications. Using schemes which calculate the exact screen space error when a 

certain resolution is used and also consider the actual area of projection onto the screen, 

would give more optimal results reducing the triangle count even further. 

 

 

7.3 Procedural textures 
Although procedural textures are still prohibitively expensive for real time use, many 

natural phenomena could have been modelled using them. Instead of having a standard 

cloud or sea texture, these textures could be produced by procedural techniques and 

changed at real time using shuffling or turbulence functions to model dynamic objects.  

Also the use of fractal algorithms to produce plants, trees and 3D clouds is well 

documented and could be used to model objects on the ground.. 

 

 

 

 

 

 



 

7.4 More environmental aspects 
The methods used to model natural phenomena and environmental aspects proved to be 

very successful. But there are still many techniques which can be applied such as 

lightmaps, underwater caustics, rain, thunder, wind etc. to produce more realistic effects. 

Furthermore the addition of agricultural detail such as plants and trees, or animals such 

as fishes or birds can produce stunning and lively environments.  

Clearly most of these techniques require physics and physically based modelling rather 

than more actual traditional graphics animation, but it is in this direction in which most 

aspects concerned modelling virtual environments is likely to move (Sanchez 1999). 

 

 

 

7.5 The world is round 
The world, which is modelled with our terrain engine, is infinite in all directions and flat. 

An interesting and quite easily achievable extension would be to alter the engine to 

accommodate spherical worlds (i.e. planets). With this extension the user could travel 

around a whole planet and arrive again at the point where he started. Planetary flights 

and navigation would be a fascinating application area. 

 

The changes which have to be made to the current engine to incorporate this 

functionality are not difficult to achieve. The fractal terrain algorithm can easily be 

altered to accommodate spherical terrain generation. The new points have to be 

generated for a sphere and the size and maximum level of detail for an area has to be 

dependent on the altitude of flight. On very high altitude (the user is outside the 

planetary atmosphere), almost all points facing the viewer should be seen at the lowest 

level of detail. Dixon  et al. (1994) has dealt with planetary terrain generation using 

fractal methods. 



8. Conclusion 
This chapter discusses the conclusion drawn from this project and the achievements 

made. 

 

 

8.1 Achievements 
Before drawing any conclusion the final achievements should be assessed. The major 

achievement of this project was the production of a fast and robust terrain engine, which 

is able to render at real-time frame rates (>30 frames per seconds), large terrain data sets 

on low-end systems.  

Although this might have been achieved previously the ingenuity of our terrain engine is 

that it is able to produce practically unlimited terrain data with natural characteristics. 

With the use of the specialised and controllable fractal terrain generation algorithm, no 

large data sets have to be stored or read from files. Practically infinite types of terrain can 

be generated and the user can fly through never before seen “alien” or “earthly” looking 

landscapes. 

All of the overall project aims and objectives were met and almost all of the extensions, 

with the exception of the construction of plants, were implemented successfully. The 

extensions of plants into the landscape were left out because they require a new 

methodology and algorithms (Level Of Detail on objects) which was not feasible to 

achieve under the current time constraints.  

The following sections discuss the success (or inefficiencies) of the particular parts of the 

engine. 

 

 

 

 

 



 

 

 

8.2 Fractal terrain generation and paging 
The terrain generation and paging element of the terrain engine worked very well. The 

algorithm for the terrain generation was based upon fractal techniques, which were 

adapted to produce controllable terrain without obscuring the nature and advantages of 

the actual algorithm.  

 

 An efficient and flexible terrain paging scheme was developed and coupled with the 

fractal terrain generation algorithm to produce infinite landscapes without any loading  of 

the terrain from data files. With the efficient data structures and caching techniques used, 

the cost for the generation of the terrain data was minimised to a degree not noticeable by 

the user and without introducing significant delays. The memory consumption is kept 

minimal due to procedural techniques and can therefore handle much larger terrain data 

than normal terrain engines.     

 

The quality of the terrain was very good, and can be adjusted to produce various types of 

landscapes. By changing the terrain generation factors like roughness, iterations or seed 

values, a huge gamma of terrain landscapes can be created. These range from rough and 

strange otherworldly to natural earth like landscapes almost any type can be produced.   

 

The main deficiency of this part of the engine is the weaknesses exhibited by the actual 

fractal algorithm used. The points are generated as regular square grids, which produce a 

non-optimal triangle count for a particular scene. The algorithm suffers also from 

artefacts due to its approximation to fractional Brownian motion. These are sometimes 

noticeable by the user. However in many cases these artefacts can be hidden successfully 

using texturing and by adjusting the fractal terrain generation parameters. 

 

 



 

 

 

8.3 View Frustum Culling 
The first optimisation measure implemented was view frustum culling. The technique 

implemented was based upon hierarchical bounding volumes. The bounding volume was 

used to cull away large parts of the landscapes, which are not in the viewing frustum.  

 

The technique, which is used to cull away geometry, is tightly coupled with the way the 

actual terrain data is represented giving optimal results. The blocks, which are used for 

terrain paging, are also used to perform frustum culling. No additional data structures are 

needed and because of the arrangement of blocks in heap sorted quad- trees, large blocks 

of geometry which are behind the user are culled immediately. More expensive and 

detailed tests are performed only the for blocks which intersect the viewing frustum 

planes.  

 

The implementation worked well and gave vast speed increases. Although the amount of 

tests, which have to be done by checking each Bounding Box can be quite expensive, 

these are reduced by the clever use of the terrain structures to avoid otherwise expensive 

tests.  

Due to inaccuracies when reconstructing the actual frustum, that the OpenGL library 

uses, some bounding boxes, at the far clipping planes whose edges or sides just protrude 

the viewing frustum are culled. This effect occurs rarely and is barely noticeable because 

of the small actual projection of the terrain (due to the distance and size) on the screen. 

 

 

 

 

 

 



 

 

 

 

8.4 Level Of Detail 
The Level Of Detail algorithm used discerns itself for its simplicity and large savings in 

the final polygon count. It is also tightly coupled with the remaining terrain generation 

and culling algorithms. The simplification performed is block based, each block of terrain 

is therefore rendered at a particular resolution. The metric upon which the simplification 

is based is the distance between user and the lower levels of detail that are produced by 

adaptive subdivision of interior points.  

 

No extra computation is performed for generating these levels of detail because they are 

already computed as part of the fractal terrain algorithm. The difference between various 

levels of detail is always in powers of 2 (8,4,2), thus resulting in massive savings.  

 

This algorithm proved to be sufficient for terrain visualisation and the error between 

actual and simplified area was within acceptable limits (barely noticeable). 

Although block-based algorithms such as this one produce good results and are simpler 

to implement they exhibit some disadvantages. The polygons produced from the 

simplified points for an area are not optimal due to the regular grid representation. 

Traditional triangulation algorithms such as Delaney triangulation or Triangulated 

Irregular Models would produce the same representation with fewer polygons. 

Popping artefacts can occur when a block is switched from one level of detail to another 

due to their difference in representation. This effect is even more obvious if the points 

simplified have large height differences. These popping artefacts, although hidden by 

texturing, are especially visible with rough terrain or at high altitudes where the user has 

all the blocks in the frustum. 

 

 



 

 

 

 

 

8.5 Environmental Aspects 
The techniques and representations used to simulate natural phenomena and the 

environment were found adequate and successful. Not only did they enhance the overall 

visual quality and natural appearance but also contributed to the better immersion of the 

user to the environment.  

Techniques such as dynamic texturing, fog, animation of water waves and alpha blending 

were employed in order to give realistic results. There are also other more expensive 

techniques such as light mapping, caustic rendering and physically based modelling 

which can be employed to give even more realistic results. 

The observation was made that some of the techniques used overloaded the rasterisation 

units of the graphics card and resulted in a drastic reduction of the frames per seconds 

rendered. Therefore the application of such effects must be undertaken with care and with 

continuing evaluation of the speed decrease for every feature added. 

 

8.6 Time Management 
The overall time scales as described in the Gantt chart were kept. Short delays were 

caused at the end of the project. These resulted from the large amount of complex 

algorithms which had to be researched at the beginning. The adaptation of the original 

fractal algorithm to an infinite area which proved very demanding and finally the 

development of fast techniques for rendering. Each possible interaction, combination and 

implication had to be found to get optimal results.  

Clearly projects of this size never end, there is always something to do better, but finally 

a compromise has to be made in order to keep the deadlines. 

 



This project has proven successfully that the time has come where with the use of good 

algorithms, highly impressive real-time graphics applications (such as terrain rendering) 

can be produced on low-end systems. Furthermore it shows the importance of intelligent 

algorithms, efficient coding and optimisation. Skills, which have been lost or forgotten 

by the high level, approaches to software engineering used today. 
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Appendices 



 
A. Colour Plate I 
 

 
 

Colour Plate I.1  Colour mapping with texturing disabled, and environmental aspects 
(clouds, sea). 

 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 

Colour Plate I.2  Screen shot above the clouds with transparent clouds, texture mapping  
enabled. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Colour Plate I.3  Waves using sinusoidal perturbation on textured sea. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Colour Plate I.4  Underwater view. 
 
 



 


